Bilinear Integrable Systems: From Classical to Quantum, Continuous to Discrete
NATO Science Series

A Series presenting the results of scientific meetings supported under the NATO Science Programme.

The Series is published by IOS Press, Amsterdam, and Springer (formerly Kluwer Academic Publishers) in conjunction with the NATO Public Diplomacy Division.

Sub-Series

I. Life and Behavioural Sciences
II. Mathematics, Physics and Chemistry
III. Computer and Systems Science
IV. Earth and Environmental Sciences

The NATO Science Series continues the series of books published formerly as the NATO ASI Series.

The NATO Science Programme offers support for collaboration in civil science between scientists of countries of the Euro-Atlantic Partnership Council. The types of scientific meeting generally supported are “Advanced Study Institutes” and “Advanced Research Workshops”, and the NATO Science Series collects together the results of these meetings. The meetings are co-organized by scientists from NATO countries and scientists from NATO’s Partner countries — countries of the CIS and Central and Eastern Europe.

Advanced Study Institutes are high-level tutorial courses offering in-depth study of latest advances in a field.

Advanced Research Workshops are expert meetings aimed at critical assessment of a field, and identification of directions for future action.

As a consequence of the restructuring of the NATO Science Programme in 1999, the NATO Science Series was re-organized to the four sub-series noted above. Please consult the following web sites for information on previous volumes published in the Series.

http://www.nato.int/science
http://www.springer.com
http://www.iospress.nl

Series II: Mathematics, Physics and Chemistry – Vol. 201
Bilinear Integrable Systems: From Classical to Quantum, Continuous to Discrete

edited by

Ludwig Faddeev
Russian Academy of Sciences, St. Petersburg, Russia

Pierre Van Moerbeke
Université Catholique de Louvain, Louvain-la-Neuve, Belgium

and

Franklin Lambert
Vrije Universiteit Brussel, Belgium
TABLE OF CONTENTS

Preface ix
List of Participants xiii

Aratyn, Henrik & Van de Leur, Johan: *The CKP hierarchy and the WDVV prepotential* 1

Arik, M.: *Quantum invariance groups of particle algebras* 13

Athorne, Chris: *Algebraic Hirota maps* 17

Bajnok, Z., Palla, L., & Takács, G.: *Boundary states in SUSY sine-Gordon model* 35

Bobenko, Alexander I.: *Geometry of discrete integrability. The consistency approach* 43

Doktorov, E.V. & Rothos, V.M.: *Homoclinic orbits and dressing method* 55

Enolskii, V. & Grava, T.: *Riemann-Hilbert problem and algebraic curves* 65

Gerdjikov, V.S.: *Analytic and algebraic aspects of Toda field theories and their real Hamiltonian forms* 77

Grammaticos, B., Ramani, A. & Carstea, A. S.: *Bilinear avatars of the discrete Painlevé II equation* 85

Haine, Luc: *Orthogonal polynomials satisfying Q-difference equations* 97

Hirota, Ryogo: *Discretization of coupled soliton equations* 113

Horozov, E.: *An adelic W-algebra and rank one bispectral operators* 123
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kakei, Saburo: Toroidal Lie algebra and bilinear identity of the self-dual Yang-Mills hierarchy</td>
<td>137</td>
</tr>
<tr>
<td>Lambert, F. & Springael, J.: From soliton equations to their zero curvature formulation</td>
<td>147</td>
</tr>
<tr>
<td>Leble, Sergey: Covariant forms of Lax one-field operators: from Abelian to noncommutative</td>
<td>161</td>
</tr>
<tr>
<td>Marshakov, A. & Zabrodin, A.: On the dirichlet boundary problem and Hirota equations</td>
<td>175</td>
</tr>
<tr>
<td>Matveev, Vladimir B.: Functional-difference deformations of Darboux-Pöschl-Teller potentials</td>
<td>191</td>
</tr>
<tr>
<td>Mir-Kasimov, R.M.: Maxwell equations for quantum space-time</td>
<td>209</td>
</tr>
<tr>
<td>Naudts, Jan: A solvable model of interacting photons</td>
<td>219</td>
</tr>
<tr>
<td>Ohta, Y.: Discretization of a sine-Gordon type equation</td>
<td>225</td>
</tr>
<tr>
<td>Pogrebkov, A.K.: Hierarchy of quantum explicitly solvable and integrable models</td>
<td>231</td>
</tr>
<tr>
<td>Puttock, S.E. & Nijhoff, F.W.: A two-parameter elliptic extension of the lattice KdV system</td>
<td>245</td>
</tr>
<tr>
<td>Rothos, Vassilis M. & Feckan, Michal: Travelling waves in a perturbed discrete sine-Gordon equation</td>
<td>253</td>
</tr>
<tr>
<td>Sasaki, Ryu: Quantum VS classical Calogero–Moser systems</td>
<td>259</td>
</tr>
<tr>
<td>Takahashi, Daisuke & Iwao, Masataka: Geometrical dynamics of an integrable piecewise-linear mapping</td>
<td>291</td>
</tr>
<tr>
<td>Takhtajan, Leon A.: Free bosons and dispersionless limit of Hirota tau-function</td>
<td>301</td>
</tr>
</tbody>
</table>
Table of Contents

Tokihiro, Tetsuji: On fundamental cycle of periodic Box-Ball systems 325

van Moerbeke, P.: Combinatorics and integrable geometry 335

Verhoeven, C., Musette, M. & Conte, R.: On reductions of some KdV-type systems and their link to the quartic Hénon-Heiles hamiltonian 363

Willox, R. & Hietarinta, J.: On the bilinear forms of Painlevé’s 4th equation 375
PREFACE

On April 29, 1814 Napoleon landed on the island of Elba, surrounded with a personal army of 1200 men. The allies, Russia, Prussia, England and Austria, had forced him into exile after a number of very costly defeats; he was deprived of all his titles, but could keep the title of “Emperor of Elba”. History tells us that each morning he took long walks in the sun, reviewed his army each midday and discussed world matters with newly appointed advisors, following the same pattern everyday, to the great surprise of Campbell, the British officer who was to keep an eye on him. All this made everyone believe he was settled there for good. Napoleon once said: Elba is beautiful, but a bit small. Elba was definitely a source of inspiration; indeed, the early morning, March 6, 1815, Metternich, the chancellor of Austria was woken up by one of his aides with the stunning news that Napoleon had left Elba with his 1200 men and was marching to Paris with little resistance; A few days later he took up his throne again in the Tuileries. In spite of his insatiable hunger for battles and expansion, he is remembered as an important statesman. He was a pioneer in setting up much of the legal, administrative and political machinery in large parts of continental Europe.

We gathered here in a lovely and quaint fishing port, Marciana Marina on the island of Elba, to celebrate one of the pioneers of integrable systems, Hirota Sensei, and this at the occasion of his seventieth birthday. Trained as a physicist in his home university Kyushu University, Professor Hirota earned his PhD in ’61 at Northwestern University with Professor Siegert in the field of “Quantum Statistical mechanics”. He wrote a widely appreciated Doctoral dissertation on “Functional Integral representation of the grand partition function”. As a young researcher, he entered the RCA Company in Tokyo to do research on semiconductor plasmas. He then joined the Faculty of Science and Engineering of Ritsumeikan University in Kyoto and then later Hiroshima National University and Waseda University, until his recent retirement.

We are also celebrating another birthday, namely the birth, some thirty years ago, of multisoliton solutions for the KdV equation, the representation of integrable equations as bilinear equation and Hirota’s D-operation. All this happened in the period 1971 through 1974.

Professor Hirota was led to model the Toda lattice as a non-linear network of ladder-type LC circuits. The self-dual case led to equations very reminiscent of the Sine-Gordon equation, with much the same features (existence of one soliton, soliton-soliton interaction, etc)
Meanwhile, At RCA, Hirota Sensei was looking for applications of solitons to multi-channel communication systems. As an important requirement, they needed to be stable in the presence of a ripple. Taking a 2-soliton interaction, letting one of them become very small, led to the stability of a 1-soliton solutions. What about the stability of two solitons? Professor Hirota argued as follows: If one wants to use the same method, one should look for three-soliton solutions and again let one soliton become very small. In the beginning, most naïve guesses turned out to be wrong. Finally the answer came from an ingenious use of the Bäcklund transformation and a superposition principle, for the sine-Gordon equation. In this way, Professor Hirota expressed the three-soliton solution, in terms of sums of exponentials with phases linear in x and t. These same kind of methods could then be applied to the non-linear self-dual network equation, the Toda equation and finally to the KdV equation.

In his celebrated 1971-paper: “Exact solutions of the KdV equation for multiple collisions of solitons”, Hirota gave the multisoliton solution to the KdV equation in terms of the second logarithmic derivative of a determinant of exponentials and showed most importantly that the determinant satisfies a bilinear equation of order 4. So Hirota’s bilinear equation was born.

The story goes that Professor Scott who was visiting Japan in the summer 1971 remarked: why do you want to replace the KdV equation by a much more complicated equation, namely the bilinear equation, which after all is 4th order? This seemingly negative comment had striking consequences. Having written bilinear equations for all those integrable PDE’s, Professor Hirota became very concerned with finding simple ways to express them, which he did in a paper in 1974, where he introduced the operation, known these days as Hirota symbol or Hirota D-operator. This amazing intuition turned out to have profound consequences. Beyond being an ingenious device, it had a lasting impact onto the field. It gave rise to the famous tau-function theory, which by now has become a classic chapter of mathematical physics. One might say that the Hirota symbol has become one of those tools that everyone is using without referring to it in the bibliography, just like Schwarz’s inequality or Stokes’ theorem.

Hirota’s career is specked with striking and stunning discoveries, often based on simple, but ingenious observations. They unleashed a great tide of energy and activity; all hell broke loose. In the 70’s, one miracle came after the other, the field literally exploded in the most fascinating directions that we all know and worship. This week here in Elba will be a tribute to his work!

This NATO-sponsored workshop here in Elba was dominated by an enormous wealth of subjects around integrability, ranging from geometric to analytic questions, from Lie groups, quantum groups and W-algebras to combinatorics and quantum field theory. We would like to thank the participants for having delivered these interesting lectures. Also many thanks to those who have contributed to this volume.
The organizing committee consisted of Professors Franklin Lambert, Frank Nijhoff, Ludwig Faddeev and Pierre van Moerbeke. Last but not least, we would like to express our gratitude to Professor Franklin Lambert. It was his idea to organize the conference on this theme, he picked this wonderful spot, he was the real engine behind this enterprise, he did an enormous amount of work. Thank you Franklin!

Ludwig D. Faddeev
Pierre van Moerbeke
LIST OF PARTICIPANTS

M. Arik
Bogazici University
Physics Department
80815 Bebek
Istanbul, Turkiye
arikm@boun.edu.tr

C. Athorne
Department of Mathematics
University of Glasgow
G12 8QW
UK
c@maths.gla.ac.uk

E. Belokolos
Department of Theoretical Physics
Institute of Magnetism
National Academy of Sciences of Ukraine
36-b, prosp. Vernadsky
03142 Kiev-142, Ukraine
bel@im.imag.kiev.ua

A. Bobenko
Department of Mathematics
Technical University of Berlin
Strasse des 17 Juni 136
10623 Berlin, Germany
bobenko@math.tu-berlin.de

R. Conte
Service de Physique de l’Etat Condensé
CEA-Saclay
F-91191 Gif-sur-Yvette Cedex
France
conte@spec.saclay.cea.fr

E. Doktorov
B.I. Stepanov Institute of Physics
68F. Skaryna Ave
220072 Minsk
Republic of Belarus
doktorov@dragon.bas-net.by

B. Dubrovin
Mathematics Physics Sector
International School for Advanced Studies (SISSA)
Via Beirut, 2-4
I-34013 Trieste, Italy
dubrovin@sissa.it

V. Enolskii
Institute of Magnetism
National Academy of Sciences of Ukraine
36-b, prosp. Vernadsky
03142 Kiev-142, Ukraine
V.Z.Enolskii@ma.hw.ac.uk

L. Faddeev
Steklov Mathematical Institute
Russian Academy of Sciences
27, Fontanka
St. Petersburg 191011, Russia
faddeev@pdmi.ras.ru

V.S. Gerdjikov
Department of Theoretical Physics
Institute for Nuclear Research and Nuclear Energy
Bulgarian Academy of Sciences
72 Tsarigradsko chaussee
1784 Sofia, Bulgaria
gerijkov@inrne.bas.bg
C. Gilson
Department of Mathematics
University of Glasgow
Glasgow G12 8QW
UK
crg@maths.gla.ac.uk

B. Grammaticos
GMPIB, Univ. Paris VII
Tour 24-14, 5e et., Case 7021
75251 Paris, France
grammati@paris7.jussieu.fr

F. Gungor
Department of Mathematics
Faculty of Science and Letters
Istanbul Technical University
80626 Maslak-Istanbul
Turkey
gungorf@itu.edu.tr

L. Haine
University of Louvain
Department of Mathematics
2 Chemin du Cyclotron
1348 Louvain-la-Neuve
Belgium
haine@math.ucl.ac.be

J. Hietarinta
Department of Physics
University of Turku
FIN-20014 Turku
Finland
Jarno.Hietarinta@utu.fi

R. Hirota
Department of Information and
Computer Sciences
Waseda University, School of
Science and Engineering
Shinjuku, Tokyo, Japan
roy@spnl.speednet.ne.jp

E. Horozov
University of Sofia
Faculty of Mathematics and
Informatics
5, James Bourchier blvd.
1126 Sofia, Bulgaria
horozov@fmi.uni-sofia.bg

K. Kajiwara
Graduate School of Mathematics
Kyushu University
6-10-1 Hakozaki, Fukuoka
812-8581
Japan
kaji@math.kyushu-u.ac.jp

S. Kakei
Department of Mathematics
Faculty of Science
Rikkyo University
Nishi-Ikebukuro, Toshima-ku
Tokyo 171-8501, Japan
kakei@rkmath.rikkyo.ac.jp

R. Kashaev
Section de mathématiques
Université de Genève
2-4, rue du Lièvre
C.P.240, 1211 Genève 24 (Suisse)
Rinat.Kashaev@math.unige.ch

B. Konopelchenko
Dipartimento di Fisica
Università degli Studi di Lecce
Via Arnesano
73100 Lecce, Italy
Boris.Konopelchenko@le.infn.it

V. Kuznetsov
Department of Applied Mathematics
University of Leeds
Woodhouse Lane, Leeds LS2 9JT
England, UK
vadim@maths.leeds.ac.uk
F. Lambert
Vrije Universiteit Brussel
Theoretische Natuurkunde (TENA)
Pleinlaan 2, B-1050 Brussels
Belgium
tenasecr@vub.ac.be

S. Leble
Faculty of Technical Phys. and
Applied Math.
Gdansk University of Technology
ul. G. Narutowicza 11/12
80-952 Gdansk-Wrzeszcz, Poland
leble@mif.pg.gda.pl

J. Loris
Vrije Universiteit Brussel
Theoretische Natuurkunde (TENA)
Pleinlaan 2, B-1050 Brussels
Belgium
igloris@vub.ac.be

F. Magri
Department of Mathematics and
Applications
University of Milano-Bicocca
Via Bicocca degli Arcimboldi
8-20126 Milano, Italy
magri@matapp.unimib.it

A. Marshakov
Russian Federation State Scientific Center
Institute for Theoretical and Experimental Physics
B. Cheremushkinskaja, 25
117259 Moscow, Russia
mars@gate.itep.ru

V. Matveev
Université de Bourgogne
U.F.R. Sciences et Techniques
B.P. 47870
F-21078 Dijon Cedex, France
matveev@u-bourgogne.fr

R. Mir-Kasimov
Bogoliubov Laboratory of Theoretical Physics
JINR
141980 Dubna, Moscow region
Russia
mirkr@thsunl.jinr.ru

M. Musette
Vrije Universiteit Brussel
Theoretische Natuurkunde (TENA)
Pleinlaan 2, B-1050 Brussels
Belgium
mmusette@vub.ac.be

J. Naudts
Departement Fysica
Universiteit Antwerpen UIA
Universiteitsplein 1
B-2610 Antwerpen, Belgium
naudts@uia.ua.ac.be

F. Nijhoff
Department of Mathematics
University of Leeds
Leeds LS2 9JT
UK
frank@amsta.leeds.ac.uk

J.J.C. Nimmo
Department of Mathematics
University of Glasgow
Glasgow G12 8QW
UK
j.nimmo@maths.gla.ac.uk

Y. Ohta
Department of Applied Mathematics
Faculty of Engineering, Hiroshima University
1-4-1 Kagamiyama, Higashi-Hiroshima 730-8527
Japan
ohta@kurims.kyoto-u.ac.jp
L. Palla
Department of Theoretical Physics
Eötvös Loránd University
1518 Budapest, Pf. 32
Hungary
palla@ludens.elte.hu

A. K. Pogrebkov
V. A. Steklov Mathematical Institute
Russian Academy of Sciences
GSP-1, ul. Gubkina 8
117966 Moscow
Russian Federation
pogreb@mi.ras.ru

R. Sasaki
Yukawa Institute for Theoretical Physics
Kyoto University
Kyoto, 606-8502
Japan
ryu@yukawa.kyoto-u.ac.jp

Y. B. Suris
Institut fuer Mathematik
Technische Universitaet Berlin
Str. des 17. Juni 136
D-10623 Berlin, Germany
suris@sfb288.math.tu-berlin.de

D. Takahashi
Department of Mathematical Sciences
Waseda University
3-4-1, Ohkubo, Shinjuku-ku
Tokyo 169-8555, Japan
tdaisuke@mub.biglobe.ne.jp

L. Takhtajan
Department of Mathematics
SUNY at Stony Brook
Stony Brook
NY 11794-3651
USA
leontak@math.sunysb.edu

K. M. Tamizhmani
Department of Mathematics
Pondicherry University
Kalanpet, Pondicherry-605 014
India
tamizh@yahoo.com

T. Tokihiro
Graduate School of Mathematical Sciences
University of Tokyo
3-8-1 Komaba, Meguro-ku
Tokyo, Japan
toki@poisson.ms.tokyo-u.ac.jp

N. Ustinov
Theoretical Physics Department
Al. Nevsky str. 14
Kaliningrad 236041
Russia
n_ustinov@mail.ru

Johan van de Leur
Department of Mathematics
University of Utrecht
P.O. Box 80010
3508 TA Utrecht
The Netherlands
vdleur@math.uu.nl

P. van Moerbeke
Université Catholique de Louvain
Département de Mathématique
Chemin du Cyclotron, 2
1348 Louvain-la-Neuve, Belgium
vanmoerbeke@math.ucl.ac.be

P. Vanhaecke
Université de Poitiers, Dépt. de Mathématiques
Boulevard Marie et Pierre Curie, BP 30179
86962 Futuroscope Chasseneuil Cedex
France
Pol.Vanhaecke@mathlabo.univ-poitiers.fr

A. Volkov
Vrije Universiteit Brussel
Theoretische Natuurkunde
Pleinlaan 2, B-1000 Brussel
Belgium
avolkov@vub.ac.be

Ralph Willox
Graduate School of Mathematical Sciences
University of Tokyo
3-8-1 Komaba, Meguro-ku
Tokyo, Japan
willox@poisson.ms.u-tokyo.ac.jp

A. Zabrodin
Institute of theoretical and
experimental physics
B. Cheremushkinskaya 25
Moscow 117259
Russia
zabrodin@heron.itep.ru

V. Zakharov
Landau Institute for Theoretical Physics
Kosygina 2
Moscow 117 940
Russia
zakharov@hedgehog.math.arizona.edu