Autonomic Computing and Networking
Preface

Autonomic computing and networking are emerging paradigms that allow for the creation of self-managing and self-controlling environments by employing distributed algorithms and context-awareness to dynamically control networking functions without human interventions. Autonomic networking is characterized by recovery from failures and malfunctions and agility to changing networking environments and self-optimization. The self-control and management features can help overcome the growing complexity and heterogeneity of existing communication networks and systems. The realization of fully autonomic heterogeneous networking requires fundamental research challenges in all aspects of computing, networking, communications, and other related fields.

This book, with chapters contributed by prominent researchers from academia and industry, will serve as a technical guide and reference material for engineers, scientists, practitioners, and researchers by providing them with state-of-the-art research findings and future opportunities and trends. These contributions include state-of-the-art architectures, protocols, technologies, and applications in pervasive computing and wireless networking. In particular, the book covers existing and emerging communications and computing models, design architectures, mobile and wireless applications, technologies, and research issues in autonomic computing systems and communications.

The book has 18 chapters organized into two sections: autonomic computing and autonomic networking. Each section contains nine chapters addressing existing and emerging architectures, protocols, and applications.

Part I Autonomic Computing

This section consists of Chapters 1–9 and covers various topics on autonomic computing systems and applications. Chapter 1 by Radu discusses a generic autonomic computing framework for the development of self-managing systems. A prototype implementation of the reconfigurable policy engine is used to develop autonomic solutions in case studies from several application domains.

Chapter 2 by Garlan et al. presents a system called Rainbow that uses software architecture models and styles to support self-adaptation. The framework provides
general and reusable infrastructures with well-defined customization points, allowing engineers to systematically customize Rainbow for particular systems. Chapter 3 by Mpitziopoulos et al. discusses mobile agent-based middleware solutions for autonomic data fusion tasks. Chapter 4 by Hagimont et al. presents a component-based autonomic management system for legacy software. It describes the design and implementation of such a system and evaluates different uses. Chapter 5 by Brock and Goscinski proposes a dynamic web services description language for supporting autonomic computing. The framework allows the attributes of web services to be visible, thus allowing the autonomic system to better cater to the installation and use of new components. Chapter 6 by Oliveri et al. discusses a bio-inspired cognitive radio for dynamic spectrum access. Autonomic bio-inspired approaches and spectral access are also discussed. Chapter 7 by Boucadair discusses the introduction of autonomous behaviors to IP multimedia subsystem (IMS)-based architectures. Solutions covered aim at enhancing the robustness and the availability of current IMS-based architectures owing to the activation of autonomic-like techniques. Chapter 8 by Bixio et al. discusses the cognition-based distributed spectrum sensing for autonomic wireless systems. Finally, in Chapter 9, Kwok presents an autonomic peer-to-peer systems with a focus on incentive and security issues.

Part II: Autonomic Networking

This section consists of Chapters 10–18 with a focus on autonomic networking and communications.

Chapter 10 by Boutaba et al. discusses autonomic networks with focus on knowledge management and self-stabilization. In-depth discussions of basic concepts, research challenges, and their importance for the success of autonomic networks are presented. Chapter 11 by Yu et al. discusses autonomic wireless sensor networks. The chapter has an in-depth discussion of existing research activities in this area. Chapter 12 by Wada et al. discusses a model-driven development environment for biologically inspired autonomic network applications. The chapter proposes and evaluates a new development environment, called iNetLab, which can improve the productivity of designing, maintaining, and tuning operational policies in autonomic network applications. Chapter 13 by Cascado et al. discusses network reconfiguration in high-performance interconnection networks. Chapter 14 by Zulkernine et al. discusses autonomic management of networked web service-based processes. The authors discuss web services management from service providers’ and service consumers’ perspectives.

Chapter 15 by Zseby et al. discusses self-protection in autonomic and related networks. Chapter 16 by Cong-Vinh discusses the formal aspects of self-* in autonomic networked computing systems. Chapter 17 by Alouf et al. discusses autonomic information diffusion in intermittently connected networks. The chapter proposes a framework for designing autonomic information diffusion mechanisms using techniques and tools drawn from evolutionary computing research. Finally, Chapter 18
by He et al. presents dynamic and fair spectrum access mechanism for autonomous communications.

This book has the following salient features:

- Provides a comprehensive reference on autonomic computing and networking.
- Presents state-of-the-art techniques in autonomic computing and networking.
- Contains illustrative figures enabling easy reading.
- Discusses emerging trends and open research problems in autonomic computing and networking.

We owe our deepest gratitude to all the authors for their valuable contribution to this book and their great efforts. All of them are extremely professional and cooperative. We wish to express our thanks to Springer especially Katelyn Stanne, Caitlin Womersley, and Jason Ward for their support and guidance during the preparation of this book. A special thank also goes to our families and friends for their constant encouragement, patience, and understanding throughout this project.

The book serves as a comprehensive and essential reference on autonomic computing and networking and is intended as a textbook for senior undergraduate and graduate-level courses. It can also be used as a supplementary textbook for undergraduate courses. The book is a useful resource for the students and researchers to learn autonomic computing and networking. In addition, it will be valuable to professionals from both the academia and industry and generally serves instant appeal to the people who would like to contribute to autonomic computing and networking technologies.

We welcome and appreciate your feedback and hope you enjoy reading the book.

Mieso K. Denko
Ontario, Canada

Laurence T. Yang
Nova Scotia, Canada

Yan Zhang
Oslo, Norway
Contents

Part I Autonomic Computing

General-Purpose Autonomic Computing 3
Radu Calinescu

Software Architecture-Based Self-Adaptation 31
David Garlan, Bradley Schmerl, and Shang-Wen Cheng

Mobile Agent Middleware for Autonomic Data Fusion in Wireless
Sensor Networks ... 57
Aristides Mpitziopoulos, Damianos Gavalas, Charalampos Konstantopoulos,
and Grammati Pantziou

Component-Based Autonomic Management for Legacy Software 83
Daniel Hagimont, Patricia Stolf, Laurent Broto, and Noel De Palma

Dynamic WSDL for Supporting Autonomic Computing 105
Michael Brock and Andrzej Goscinski

Bio-inspired Cognitive Radio for Dynamic Spectrum Access 131
Giacomo Oliveri, Marina Ottonello, and Carlo S. Regazzoni

Introducing Autonomous Behaviors into IMS-Based Architectures 155
Mohamed Boucadair

Embodied Cognition-Based Distributed Spectrum Sensing for
Autonomic Wireless Systems ... 179
Luca Bixio, Andrea F. Cattoni, Carlo S. Regazzoni, and Pramod K. Varshney

Autonomic Peer-to-Peer Systems: Incentive and Security Issues 205
Yu-Kwong Kwok
Part II Autonomic Networking

Toward Autonomic Networks: Knowledge Management and Self-Stabilization ... 239
Raouf Boutaba, Jin Xiao, and Qi Zhang

Autonomic Networking in Wireless Sensor Networks 261
Mengjie Yu, Hala Mokhtar, and Madjid Merabti

iNetLab: A Model-Driven Development and Performance Engineering Environment for Autonomic Network Applications 285
Hiroshi Wada, Chonho Lee, Junichi Suzuki, and Tetsuo Otani

Network Reconfiguration in High-Performance Interconnection Networks .. 313
R. Casado, A. Bermúdez, A. Robles-Gómez, O. Lysne, T. Skeie, Á.G. Solheim, and T. Sødring

Autonomic Management of Networked Web Services-Based Processes . . . 333
Farhana H. Zulkernine, Wendy Powley, and Patrick Martin

Concepts for Self-Protection .. 355
Tanja Zseby, Heiko Pfeffer, and Stephan Steglich

Formal Aspects of Self-* in Autonomic Networked Computing Systems . . 381
Phan Cong-Vinh

Autonomic Information Diffusion in Intermittently Connected Networks .. 411
Sara Alouf, Iacopo Carreras, Álvaro Fialho, Daniele Miorandi, and Giovanni Neglia

Dynamic and Fair Spectrum Access for Autonomous Communications ... 435
Jianhua He, Jie Xiang, Yan Zhang, and Zuoyin Tang

Index .. 455
Contributors

Sara Alouf INRIA, Sophia Antipolis, France, sara.alouf@sophia.inria.fr

A. Bermúdez Universidad de Castilla-La Mancha, I3A Campus Universitario s/n, 02071 Albacete, Spain, abermu@dsi.uclm.es

Luca Bixio Department of Biophysical and Electronic Engineering, University of Genova, Via Opera Pia 11a, 16145 Genova, Italy, luca.bixio@dibe.unige.it

Mohamed Boucadair France Télécom R&D, 42 Rue des coutures, 14066 Caen Cedex, France, mohamed.boucadair@orange-ftgroup.com

Raouf Boutaba David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, ON, Canada, rboutaba@cs.uwaterloo.ca

Michael Brock Deakin University, Pidgons Road, Waurn Ponds, Geelong, Victoria 3217, Australia, mrab@deakin.edu.au

Laurent Broto UPS, Toulouse, France, broto@irit.fr

Radu Calinescu Computing Laboratory, University of Oxford, Oxford, England UK, Radu.Calinescu@comlab.ox.ac.uk

Iacopo Carreras CREATE-NET, Trento, Italy, iacopo.carreras@create-net.org

R. Casado Universidad de Castilla-La Mancha, I3A Campus Universitario s/n, 02071 Albacete, Spain, rcasado@dsi.uclm.es

Andrea F. Cattoni Department of Biophysical and Electronic Engineering, University of Genova, Via Opera Pia 11a, 16145 Genova, Italy, cattoni@dibe.unige.it

Shang-Wen Cheng Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA, zensoul@cs.cmu.edu

Phan Cong-Vinh London South Bank University, Borough Road, London SE1 0AA, United Kingdom, phanvc@ieee.org

Noel De Palma INPG, Grenoble, France, depalma@inrialpes.fr
Álvaro Roberto Silvestre Fialho INRIA, Sophia Antipolis, France, Now at Microsoft Research-INRIA Joint Centre, Orsay, France, alvaro.fialho@inria.fr

David Garlan Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA, garlan@cs.cmu.edu

Damianos Gavalas Dept of Cultural Technology and Communication, University of the Aegean Address of Institute, Lesvos, Greece, dgavalas@aegean.gr

Andrzej Goscinski Deakin University, Pidges Road, Waurn Ponds, Geelong Victoria 3217, Australia, ang@deakin.edu.au

Daniel Hagimont INPT, Toulouse, France, hagimont@enselyt.fr

Jianhua He Institute of Advanced Telecommunications, Swansea University, Swansea SA2 8PP, UK, j.he@swansea.ac.uk

Charalampos Konstantopoulos Research Academic Computer Technology Institute, Patras, Greece, konstant@cti.gr

Yu-Kwong Kwok Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 80526-1373, USA, Ricky.Kwok@colostate.edu

Chonho Lee University of Massachusetts, Boston, MA, USA chonho@cs.umb.edu

O. Lysne University of Oslo, Simula Research Laboratory, P.O. Box 134, N-1325 Lysaker, Norway, olavly@simula.no

Patrick Martin School of Computing, Queen’s University, Kingston, ON K7L 3N6, Canada, martin@cs.queensu.ca

Madjid Merabti School of Computing and Mathematical Science, Liverpool John Moores University, Byrom Street, Liverpool, UK, M.Merabti@ljmu.ac.uk

Daniele Miorandi CREATE-NET, Trento, Italy, daniele.miorandi@create-net.org

Hala Mokhtar School of Computing and Mathematical Science, Liverpool John Moores University, Byrom Street, Liverpool, UK, H.M.Mokhtar@ljmu.ac.uk

Aristides Mpitziopoulos Dept of Cultural Technology and Communication, University of the Aegean Address of Institute, Lesvos, Greece, crmaris@aegean.gr

Giovanni Neglia INRIA, Sophia Antipolis, France University of Palermo, Palermo, Italy, giovanni.neglia@ieee.org

Giacomo Oliveri Department of Biophysical and Electronic Engineering, University of Genova, Via Opera Pia 11a, 16145 Genova, Italy, giacomo.oliveri@dibe.unige.it

Tetsuo Otani Central Research Institute of Electric Power Industry ohtani@criepi.denken.or.jp
Marina Ottonello Department of Biophysical and Electronic Engineering, University of Genova, Via Opera Pia 11a, 16145 Genova, Italy, marina@dibe.unige.it

Grammati Pantziou Department of Informatics, Technological Educational Institution of Athens, Athens, Greece, pantziou@teiath.gr

Heiko Pfeffer Fraunhofer Institute Fokus, Berlin, Germany heiko.pfeffer@fokus.fraunhofer.de

Wendy Powley School of Computing, Queen’s University, Kingston, ON K7L 3N6, Canada, wendy@cs.queensu.ca

Carlo S. Regazzoni Department of Biophysical and Electronic Engineering, University of Genova, Via Opera Pia 11a, 16145 Genova, Italy, carlo@dibe.unige.it

A. Robles-Gómez Universidad de Castilla-La Mancha, I3A Campus Universitario s/n, 02071 Albacete, Spain, arobles@dsi.uclm.es

Bradley Schmerl Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA, schmerl@cs.cmu.edu

T. Skeie University of Oslo, Simula Research Laboratory, P.O. Box 134, N-1325 Lysaker, Norway, tskeie@simula.no

T. Sødring University of Oslo, Simula Research Laboratory, P.O. Box 134, N-1325 Lysaker, Norway, tsodring@simula.no

A.G. Solheim University of Oslo, Simula Research Laboratory, P.O. Box 134, N-1325 Lysaker, Norway, aashig@simula.no

Stephan Steglich Fraunhofer Institute Fokus, Berlin, Germany stephan.steglich@fokus.fraunhofer.de

Patricia Stolf IUFM, Toulouse, France, stolf@irit.fr

Junichi Suzuki University of Massachusetts, Boston, MA jxsg@cs.umb.edu

Zuoyin Tang

Pramod K. Varshney Department of Electrical Engineering and Computer Science, Syracuse University, NY, USA, varshney@syr.edu

Hiroshi Wada University of Massachusetts, Boston, MA, USA, fshu@cs.umb.edu

Jie Xiang Simula Research Laboratory, Martin Linges vei 17, IT Fornebu, P.O.Box 134, No-1325 Lysaker, Norway, jxiang@simula.no

Jin Xiao David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, ON, Canada, j2xiao@cs.uwaterloo.ca

Mengjie Yu School of Computing and Mathematical Science, Liverpool John Moores University, Byrom Street, Liverpool UK, M.Yu@2001.ljmu.ac.uk
Qi Zhang David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, ON, Canada, q8zhqng@cs.uwaterloo.ca

Tanja Zseby Fraunhofer Institute Fokus, Berlin, Germany tanja.zseby@fokus.fraunhofer.de

Farhana H. Zulkernine School of Computing, Queen’s University, Kingston, ON K7L 3N6, Canada, farhana@cs.queensu.ca

Yan Zhang Simula Research Laboratory, Norway, yanzhang@iee.org

Zuoyin Tang Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow G1 1XW, UK, Zuoyin.Tang@strath.ac.uk