Antimicrobial Resistance
in Developing Countries
Antimicrobial Resistance in Developing Countries

Foreword by Thomas F. O’Brien
Introductory Preface by the Editors
Guest Preface by Stuart B. Levy
Avoiding infection has always been expensive. Some human populations escaped tropical infections by migrating into cold climates but then had to procure fuel, warm clothing, durable housing, and crops from a short growing season. Waterborne infections were averted by owning your own well or supporting a community reservoir. Everyone got vaccines in rich countries, while people in others got them later if at all.

Antimicrobial agents seemed at first to be an exception. They did not need to be delivered through a cold chain and to everyone, as vaccines did. They had to be given only to infected patients and often then as relatively cheap injectables or pills off a shelf for only a few days to get astonishing cures. Antimicrobials not only were better than most other innovations but also reached more of the world’s people sooner.

The problem appeared later. After each new antimicrobial became widely used, genes expressing resistance to it began to emerge and spread through bacterial populations. Patients infected with bacteria expressing such resistance genes then failed treatment and remained infected or died. Growing resistance to antimicrobial agents began to take away more and more of the cures that the agents had brought.

It then proved to be much more resource-intensive to keep patients from becoming infected with and failing treatment for drug-resistant bacteria than it had been to deliver the drugs that had caused the problem. Resource-limited countries that had managed to make antimicrobials available to their infected patients could not afford to do all the things that were then needed to manage the antimicrobial resistance that resulted.

Antimicrobial resistance seems a function of how many bacteria have been exposed to antimicrobials, for example, so treat only infections that antimicrobials cure for as long, but only as long, as needed. Treating an infecting germ with a drug it resists not only fails but also makes that resistant germ spread, so treat only with the drug that can still kill it. Resistant germs spread to others, so identify them and interrupt their spread.

Each of these ways to control resistance costs much more than it had cost to distribute the boxes of pills and injectables that had begun the resistance. Expensive microbiology laboratories in rich countries test whether the germ
infecting any patient is of a kind that antimicrobial agents kill, and if so which agent could still kill it. Those countries then make that agent promptly available by keeping ubiquitous costly stocks of all agents.

Adequate housing and support for personal hygiene may also minimize interpersonal exchange of resistant bacteria in communities of developed countries, and clean water limits their ingestion. Many developed countries feed large amounts of resistance-selecting antimicrobials to food animals, however, but they do ban their residuals in food or their use to preserve food. Less is known about these in developing countries.

In both rich and poor nations, resistant bacteria cause their most frequent, costly, and deadly infections in hospitals and intensive care units. In the rich nations, however, disposable items come in truckloads from warehouses to help nurses, and well-organized infection control teams slow the spread of resistant bacteria between private rooms, while the poorer struggle with shortages of reusable items and one hand-washing sink for an open ward.

Further promoting resistance in resource-limited countries is a cruel underlying inequity. They have more of the infections that richer countries have, e.g., pneumococcal, AIDS, meningococcal, trauma-related, tuberculosis, shigellosis, plus many they do not have, such as typhoid, malaria, and cholera. These require more valid antimicrobial use and also elicit more inadvertent misuse by complicating diagnosis, thus making resistance worse.

In a developed country, a sick febrile patient has prompt laboratory testing and compiled local test results to predict diagnosis and best therapy immediately, with confirmation or adjustment in a few days. In an undeveloped country, there will be fewer or no tests or compiled results, fewer antimicrobials available for often blind therapy of more possible diagnoses and so more chance of treatment failure and further spread of resistance.

For all of these reasons, the management of antimicrobial resistance in the resource-limited world faces special challenges and appears to need tools that are less resource-intensive than those that have evolved in the developed world. Affordable strategies and tools to manage antimicrobial resistance in less-resourced regions may need special effort to develop, but possible examples can be considered.

Microbiology laboratories in developed countries, for example, using supply-intensive instruments and highly trained and salaried staff for a huge menu of tests, become the model of excellence. Attempts to duplicate them in a developing country, however, may deplete the pool of trained professionals, outrun supply sources, and price tests so high that few patients can afford them and they become, after all, largely unused.

An alternative model might be developed in which a limited set of inexpensive essential tests using a common list of supplies could be performed by less-extensively but specifically trained workers supported by a web-based support and oversight system. This would not replace any currently functioning laboratories but supplement them at the next lower tier of medical facilities that now have no laboratories.
Similarly, growth of the Internet may provide cheap ways to provide updated information on currently prevalent infections and their drug resistances, as locally compiled data now do in developed countries, and use it to update and disseminate treatment guidelines. Every microbial test result that can be produced in a resource-limited country should be captured and analyzed to help overview its problems and update responses to them.

Each of the tools now used to control antimicrobial resistance might thus be reviewed with developing world caregivers to explore ways in which they could be modified to be cost-effective in their circumstances. Might not hospitals that cannot afford a team of infection control nurses, for example, have access to special training materials and information support to help their existing nursing staff carry out some of their functions?

Such a rethinking of the tools and strategies for controlling antimicrobial resistance to improve their application in the resource-limited world will not happen spontaneously. It will require concerted and funded effort by specialists from both worlds. Gaining support for it may prove difficult, moreover, since the whole problem of antimicrobial resistance has repeatedly slipped from the attention of public health and other funding agencies.

The first step in such a needed initiative is to recognize that antimicrobial resistance is a different and more deadly problem in the developing world and to elaborate in detail all of the aspects of that problem. That is what this book does and why it is important. It can be seen as both an informative work and a basis for action.

Boston, Massachusetts

Thomas F. O'Brien
Introduction

This book was mainly compiled while we quietly celebrated the 80th anniversary of the discovery of penicillin, a fact that formally inaugurated the “era of antibiotics” and it will become available during the celebration of the 150th anniversary of Darwin’s *On the Origin of Species* (and the 200th anniversary of Darwin himself). These two milestones remind us, on the one hand, that we have been witnesses to the evolution of bacteria and other microorganisms from mostly susceptible to mostly resistant to drugs and, on the other, how little to heart even those of us who are not blinded by superstition have taken the basic notions of genetic change and selection. But in addition to the formidable evolutionary forces behind resistance, and the equally formidable neglect in putting our knowledge of it to work, developing countries have to deal with a wide variety of peculiar conditions that foster the emergence and spread of resistant germs. These aggravating factors range from malnutrition to lack of medical services and inadequate medical training and then to counterfeit drugs and incompetent governments. These traits are not exclusive to poor countries, but coalesce in the worst possible ways here. There is an exceptional need for rigorous data on the scale and spread of antimicrobial resistance, as well as for effective means for sharing the data and using it as an evidence base for effective containment strategies. In developing countries where resistance is a prime issue, data are least available, evidence is rarely collated, and containment interventions have been poorly implemented. Indeed, the validity of many proposed interventions in developing countries remains untested.

In putting together this book, we tried to assemble an overview of the magnitude, causes, consequences, and possible actions on microbial resistance in developing countries. If the book appears brief, it is because we know little about this particular side of the problem, as one of the main features of poor countries is insufficient scientific and medical research, and of opportunities to publish the scarce findings in “international” scientific journals, which routinely dismiss papers from developing countries because results are “only of local interest”. Therefore, in addition to presenting information and ideas, the book explicitly highlights gaps that represent opportunities for research and policy innovation. High among our priorities has been to obtain data and critique
from scholars who work not on but in developing countries and to include input from a variety of geographic regions. The picture that emerges, although incomplete, allows the reader to assess the current and emerging threats, the distinct issues that influence the evolution of resistance, the main problems caused by resistance, and the potential avenues to tackle at least some of this complex panorama.
Preface

The problem of antimicrobial resistance knows no boundaries. Drug-resistant microbes of all kinds can move among people and animals, from one country to another—without notice. From the early stages of identifying and discovering antibiotic resistance, the problem was clearly severe in developing countries where drug availability was limited and resistance was high. However, it has been in the developed world, with its abundant resources, where resistance has been more vigorously studied. Therefore, it is of some interest that out of a 1981 meeting in the Dominican Republic, where representatives from developing as well as industrialized countries assembled, came an Antibiotic Misuse Statement declaring the consequences of inappropriate use of antibiotics, namely the emergence and spread of antibiotic resistance. The response to the wide circulation of the statement led to the establishment of the Alliance for the Prudent Use of Antibiotics (APUA). This international organization continues today, 27 years later, to champion increased awareness and appropriate antimicrobial use so as to curtail drug resistance and “preserve the power of antibiotics.” APUA fosters partnerships and communications among people in both developed and developing countries to improve antibiotic accessibility and reverse resistance.

This book, edited by Drs. Anibal Sosa and Denis Byarugaba and their associate editors, is unique in focusing on antimicrobial resistance as it relates to and threatens developing countries. It is curious that it has taken this long to produce a book dedicated to antibiotic resistance in developing parts of the world. One can ask “why?” since resistance is and has been so common there. In fact, whereas resistance has been addressed for the past four decades by experts in the industrialized world, studies describing the problem and the public health situation in the developing world have lagged behind. Although we have learned much from studies of the genetics and molecular biology of the problem from investigations in industrialized countries, it is in developing countries where more studies and efforts are needed. With travel encouraging the transport of microbes, the information in this book will have wide-sweeping benefit, not only for developing countries but also for the world at large. Surveillance of resistance and the prevention of resistance need attention on a worldwide basis. Improving antibiotic use requires a global effort.
One hopes that bringing an organized focus to the problem in developing nations will help efforts to improve accessibility to effective antibiotics and reduce resistance in previously neglected regions and countries of the globe. And so it is relevant that there are chapters in this book devoted to a particular country or region in which resistance poses a life-threatening challenge. We read about treatment failures and resistance challenges in Asia, Africa, and Latin America. The microbes under discussion in the book are not confined to bacteria, but encompass HIV, fungi, and parasites, including the agents of malaria and trypanosomiasis.

Lessons learned in one country can help others. What is needed is a clear idea of what the magnitude of the problem is and what efforts are being made to address it. The focus needs to be on the antimicrobial—its use and its availability—as well as the presence of resistant organisms and their resistance genes. Spread of resistance traits and resistant organisms is a further complicating feature of the resistance problem.

The chapter on the economics of resistance opens the potential for important cost analysis comparisons in this part of the world with studies in hospitals and health-care systems in industrialized countries. Cost is an important obstacle to change but needs to be assessed if we are to see change. Other chapters include discussions of the pivotal positive and negative roles of the pharmaceutical industry in delivering and marketing drugs in the developing world. Quite clearly, greater recognition of the needs and objectives of the stakeholders is critical to an understanding of and a cooperation in improving antibiotic availability and the decreasing frequency of resistance in these parts of the world.

The authors of these chapters are each distinguished in their own right and internationally recognized. The subjects are broadly inclusive of different infectious diseases, including those of the respiratory, urinary, and gastrointestinal tracts. The role of vaccines in helping to control organisms and avoid the overuse of antibiotics is critically important and discussed.

It is time, and timely, to focus attention on the developing countries in terms of helping people understand their role in reversing the global resistance problem. This book is an important step and will join other efforts, at both the government and nongovernment levels, including those of such organizations as the Alliance for Prudent Use of Antibiotics, the World Health Organization, the Pan American Health Organization, and others, to bring attention and potential solutions to the antimicrobial resistance problem as it presents in developing countries. The book shows how the problem has similar causes and the solution has similar goals as those in the industrialized countries. Drug resistance has no geographic preference—it compromises infectious disease treatments in countries throughout the world.

Boston, Massachusetts

Stuart B. Levy
Acknowledgment

Thanks to like-minded scientists from all over the world who dedicated many hours to research to provide evidence that will inform policy. Thanks to all those who relentlessly took the task to review and improve the scientific content of many manuscript drafts. Thanks to Jessica Restucci, APUA Executive Assistant for her valuable assistance throughout the editing and proof-reading of selected chapters, as well as to Andrea Macaluso, Springer Editorial Director, Life Sciences & Biomedicine, and Melanie Wilichinsky, Editorial Assistant, for their support throughout the process of producing and copy-editing.
Contents

Part I General Issues in Antimicrobial Resistance

1 Global Perspectives of Antibiotic Resistance 3
 Carlos F. Amáible-Cuevas

2 Mechanisms of Antimicrobial Resistance 15
 Denis K. Byarugaba

3 Poverty and Root Causes of Resistance in Developing
 Countries ... 27
 Iruka N. Okeke

4 What the Future Holds for Resistance in Developing
 Countries ... 37
 Michael L. Bennish and Wasif Ali Khan

5 The Introduction of Antimicrobial Agents in Resource-Constrained
 Countries: Impact on the Emergence of Resistance 59
 Carlos Franco-Paredes and Jose Ignacio Santos-Preciado

Part II The Human Impact of Resistance

6 Human Immunodeficiency Virus: Resistance to Antiretroviral
 Drugs in Developing Countries .. 75
 Rebecca F. Baggaley, Maya L. Petersen, Marcelo A. Soares,
 Marie-Claude Boily, and Francisco I. Bastos

7 Drug Resistance in Malaria in Developing Countries 95
 Quique Bassat and Pedro L. Alonso

8 Drug Resistance in Mycobacterium tuberculosis 117
 Moses Joloba and Freddie Bwanga
9 Antifungal Drug Resistance in Developing Countries 137
David S. Perlin

10 Drug Resistance in African Trypanosomiasis 157
Enock Matovu and Pascal Mäser

11 Antimicrobial Resistance in Enteric Pathogens in Developing Countries .. 177
Samuel Kariuki

12 Bacterial-Resistant Infections in Resource-Limited Countries 199
Alessandro Bartoloni and Eduardo Gotuzzo

13 Prevalence of Resistant Enterococci in Developing Countries 233
Lorena Abadía-Patiño

14 Antimicrobial Resistance in Gram-Negative Bacteria from Developing Countries ... 249
Soraya Sgambatti de Andrade, Ana Cristina Gales, and Helio Silva Sader

15 Resistance in Reservoirs and Human Commensals 267
Michael Feldgarden

Part III Antimicrobial Use and Misuse

16 Determinants of Antimicrobial Use: Poorly Understood–Poorly Researched .. 283
Hilbrand Haak and Aryanti Radyowijati

17 Antimicrobial Use and Resistance in Africa 301
Iruka N. Okeke and Kayode K. Ojo

18 Antimicrobial Drug Resistance in Asia 315
Yu-Tsung Huang and Po-Ren Hsueh

19 Antimicrobial Drug Resistance in Latin America and the Caribbean ... 331
Manuel Guzmán-Blanco and Raul E. Istúriz

20 Hospital Infections by Antimicrobial-Resistant Organisms in Developing Countries ... 347
Fatima Mir and Anita K.M. Zaidi
Part IV Cost, Policy, and Regulation of Antimicrobials

21 The Economic Burden of Antimicrobial Resistance in the Developing World ... 365
 S.D. Foster

22 Strengthening Health Systems to Improve Access to Antimicrobials and the Containment of Resistance ... 385
 Maria A. Miralles

23 The Role of Unregulated Sale and Dispensing of Antimicrobial Agents on the Development of Antimicrobial Resistance in Developing Countries ... 403
 Eric S. Mitema

24 Counterfeit and Substandard Anti-infectives in Developing Countries ... 413
 Paul N. Newton, Facundo M. Fernández, Michael D. Green, Joyce Primo-Carpenter, and Nicholas J. White

Part V Strategies to Contain Antimicrobial Resistance

25 Containment of Antimicrobial Resistance in Developing Countries and Lessons Learned ... 447
 Aníbal de J. Sosa

26 Surveillance of Antibiotic Resistance in Developing Countries: Needs, Constraints and Realities ... 463
 E. Vlieghe, A.M. Bal, and I.M. Gould

27 Vaccines: A Cost-Effective Strategy to Contain Antimicrobial Resistance ... 477
 Richard A. Adegbola and Debasish Saha

28 Teaching Appropriate Antibiotic Use in Developing Countries ... 491
 Celia M. Alpuche Aranda and Luis Romano Mazzotti

29 Containing Global Antibiotic Resistance: Ethical Drug Promotion in the Developing World ... 505
 Catherine Olivier, Bryn Williams-Jones, Béatrice Doizé, and Vural Ozdemir
30 News Media Reporting of Antimicrobial Resistance in Latin America and India ... 525
 Marisabel Sánchez and Satya Sivaraman

Index .. 539
Contributors

Lorena Abadía-Patiño Departamento de Biomedicina, Instituto de Investigaciones en Biomedicina y Ciencias Aplicadas, Universidad de Oriente, Cumaná. Edo. Sucre, Venezuela, abalor@movistar.net.ve

Richard A. Adegbola Medical Research Council Laboratories (UK), Fajara, Banjul, The Gambia, West Africa, radegbola@mrc.gm

Pedro L. Alonso Barcelona Center for International Health Research (CRESIB), Hospital Clinic/Institut d’Investigacions Biomèdiques August Pi i Sunyer, Universitat de Barcelona, Barcelona, Spain; Centro de Investigação em Saúde de Manhica (CISM), Manhica, Maputo, Mozambique, palonso@clinic.ub.es

Celia M. Alpuche Aranda Laboratorio de Infectología y Microbiología, Medicina Experimental, Facultad de Medicina UNAM – Hospital General de México, Instituto Nacional de Referencia Epidemiológica de Mexico, México, DF, México, calpuche@salud.gob.mx

Carlos F. Amábile-Cuevas Fundación Lusara para la Investigación Científica, Mexico City, Mexico, carlos.amabile@lusara.org

Soraya Sgambatti de Andrade Infectious Diseases Division, Laboratório Especial de Microbiologia Clínica, Department of Medicine, Universidade Federal de São Paulo, São Paulo, Brazil, soraya.andrade@lemc.com.br

Rebecca F. Baggaley Department of Infectious Disease Epidemiology, Faculty of Medicine, Imperial College, London, UK; Département de pathologie et microbiologie, Faculté de médecine vétérinaire, Université de Montréal, Montréal, Québec, Canada, r.baggaley@imperial.ac.uk

Abhijit M. Bal Department of Medical Microbiology, Aberdeen Royal Infirmary, Forresyerhill, Aberdeen, Scotland, abhijit.bal@nhs.net

Alessandro Bartoloni Infectious Diseases Unit, Department of Critical Care Medicine and Surgery, Careggi Hospital, University of Florence, Florence, Italy, bartoloni@unifi.it
Quique Bassat Barcelona Center for International Health Research (CRESIB), Hospital Clinic/Institut d’Investigacions Biomèdiques August Pi i Sunyer, Universitat de Barcelona, Barcelona, Spain; Centro de Investigación em Saúde de Manhíça (CISM), Manhíça, Maputo, Mozambique, quique.bassat@cresib.cat

Francisco Inácio P. M. Bastos Laboratory of Health Information, Institute for Communication and Information on Science & Technology, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil, francisco.inacio.bastos@hotmail.com

Michael L. Bennish Mpilonhle, Mtubatuba, South Africa; Department of Population, Family and Reproductive Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA, michael@mpilonhle.org

Marie-Claude Boily Department of Infectious Disease Epidemiology, Faculty of Medicine, Imperial College, London, UK, mc.boily@imperial.ac.uk

Freddie Bwanga Department of Medical Microbiology, Faculty of Medicine, Makerere University Medical School, Kampala, Uganda, fbwanga@med.mak.ac.ug

Denis K. Byarugaba Department of Veterinary Microbiology and Parasitology, Faculty of Veterinary Medicine, Makerere University, Kampala, Uganda, dkb@vetmed.mak.ac.ug

Béatrice Doizé Département de pathologie et microbiologie, Faculté de médecine vétérinaire, Université de Montréal, Montréal, Québec, Canada; Faculté de médecine vétérinaire – Université de Montréal, Montréal, Québec, Canada, beatrice.doize@umontreal.ca

Michael Feldgarden The Alliance for the Prudent Use of Antibiotics; Genome Sequencing and Analysis Program, The Broad Institute, Boston, MA, USA, feldgard@broad.mit.edu

Facundo M. Fernández School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA, facundo.fernandez@chemistry.gatech.edu

Susan D. Foster Alliance for the Prudent Use of Antibiotics (APUA); Boston University, School of Public Health, Boston, MA, USA, susan.foster@tufts.edu

Carlos Franco-Paredes Hospital Infantil de México, Federico Gómez, México, DF, México; Emory University School of Medicine, Atlanta GA, USA, cfranco@himfg.edu.mx; cfranco@sph.emory.edu
Ana Cristina Gales Infectious Diseases Division, Laboratório Especial de Microbiologia Clínica, Department of Medicine, Universidade Federal de São Paulo, São Paulo, Brazil, ana.gales@gmail.com

Eduardo Gotuzzo Instituto de Medicina Tropical “Alexander von Humboldt”, Universidad Peruana Cayetano Heredia, Lima, Perú, egh@upch.edu.pe

Ian M. Gould Department of Medical Microbiology, Aberdeen Royal Infirmary, Foresterhill, Aberdeen, Scotland, i.m.gould@abdn.ac.uk

Michael D. Green Division of Parasitic Diseases, Centers for Disease Control & Prevention, Atlanta, Georgia, USA, mgreen@cdc.gov

Manuel Guzmán-Blanco Hospital Vargas de Caracas; Department of Medicine, Infectious Diseases, Centro Médico de Caracas, San Bernardino, Caracas, Venezuela, mibeli@cantv.net

Hilbrand Haak Consultants for Health and Development, Leiden, The Netherlands, haakh@chd-consultants.nl

Po-Ren Hsueh Divisions of Clinical Microbiology and Infectious Diseases, Departments of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan, hsporen@ntu.edu.tw

Yu-Tsung Huang Divisions of Clinical Microbiology and Infectious Diseases, Department of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan, yutsunghuang@ntu.edu.tw

Raul E. Istúriz Department of Medicine, Infectious Diseases, Centro Médico de Caracas, Centro Medico Docente La Trinidad, San Bernardino, Caracas, Venezuela, mgrijm@cantv.net

Moses Joloba Department of Medical Microbiology, Faculty of Medicine, Makerere University Medical School, Kampala, Uganda, mlj10@cwru.edu

Samuel Kariuki Kenya Medical Research Institute (KEMRI), Centre for Microbiology Research, Nairobi, Kenya, skariuki@kemri.org

Wasif Ali Khan CSD, International Centre for Diarrheal Disease Research, Mohakhali, Dhaka, Bangladesh, wakhan@icddrb.org

Pascal P. Mäser University of Bern, Institute of Cell Biology, Bern, Switzerland, pascal.maeser@izb.unibe.ch

Enock Matovu Department of Veterinary Parasitology and Microbiology, Faculty of Veterinary Medicine, Makerere University, Kampala Uganda, matovue@vetmed.mak.ac.ug

Fatima Mir Department of Paediatrics and Child Health, Aga Khan University Medical College, Karachi, Pakistan, fatima.mir@aku.edu
Maria A. Miralles Center for Pharmaceutical Management, Management Sciences for Health, Arlington, VA, USA, mmiralles@msh.org

Eric S. Mitema Department of Public Health, Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya, esmitema@uonbi.ac.ke

Paul N. Newton Wellcome Trust–Mahosot Hospital–Oxford Tropical Medicine Research Collaboration, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR; Centre for Tropical Medicine, Churchill Hospital, University of Oxford, UK, paul@tropmedres.ac

Kayode K. Ojo Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, ojo67kk@u.washington.edu

Iruka N. Okeke Department of Biology, Haverford College, Haverford, PA, USA, iokeke@haverford.edu

Catherine Olivier Programmes de bioéthique, Département de médecine sociale et préventive, Université de Montréal, Montréal, Québec, Canada, catherine.olivier@umontreal.ca

Vural Ozdemir Bioethics Programs, Department of Social and Preventive Medicine, Faculty of Medicine, University of Montreal, Montréal, Québec, Canada, vural.ozdemir@umontreal.ca

David S. Perlin Public Health Research Institute, New Jersey Medical School / UMDNJ at the International Center for Public Health (ICPH), Newark, NJ, USA, perlinds@umdnj.edu

Maya L. Petersen School of Public Health, University of California, Berkeley, CA, USA, mayaliv@berkeley.edu

Joyce Primo-Carpenter U.S. Pharmacopeia, Drug Quality and Information Program, Rockville, MD, USA, joypcar@yahoo.com

Aryanti Radyowijati Consultants for Health and Development, Leiden, The Netherlands, aryanti@chd-consultants.nl

Luis Romano Mazzotti Infectious Diseases Department, Hospital Infantil de México Federico Gómez, México DF, México, luisromano@mac.com

Helio Silva Sader Infectious Diseases Division, Laboratório Especial de Microbiologia Clínica, Department of Medicine, Universidade Federal de São Paulo, São Paulo, Brazil; JMI Laboratories, North Liberty, IA, USA, helio-sader@jmilabs.com

Debasish Saha Medical Research Council (UK) Laboratories, Fajara, Banjul, The Gambia, West Africa. dsaha@mrc.gm
Marisabel Sánchez Links Media, LLC, Gaithersburg, MD, USA, msanchez@linksmedia.net

Jose Ignacio Santos-Preciado Facultad de Medicina, Departamento de Medicina Experimental, Universidad Nacional Autonoma de Mexico, jisantosp@gmail.com

Satya Sivaraman Action on Antibiotic Resistance (ReAct), New Delhi, India, satyasagar@gmail.com

Marcelo A. Soares Department of Genetics, Federal University of Rio de Janeiro; Division of Genetics, Brazilian Cancer Institute, Cidade Universitaria – Ilha do Fundao, Rio de Janeiro, RJ, Brazil, masoares@biologia.ufrj.br

Aníbal de J. Sosa Alliance for the Prudent Use of Antibiotics, Boston, MA, USA, anibal.sosa@tufts.edu

Erika Vlieghe Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium, evlieghe@itg.be

Nicholas J. White Wellcome Trust–Mahosot Hospital–Oxford Tropical Medicine Research Collaboration, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR; Centre for Tropical Medicine, Churchill Hospital, University of Oxford, UK; Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand, nickw@tropmedres.ac

Bryn Williams-Jones Programmes de bioéthique, Département de médecine sociale et préventive, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada, bryn.williams-jones@umontreal.ca

Anita K.M. Zaidi Department of Pediatric and Child Health, Aga Khan University, Karachi, Pakistan, anita.zaidi@aku.edu