Topics in Hyperplane Arrangements, Polytopes and Box-Splines
Contents

Preface .. xiii
Notations .. xix

Part I Preliminaries

1 Polytopes ... 3
 1.1 Convex Sets .. 3
 1.1.1 Convex Sets .. 3
 1.1.2 Duality ... 5
 1.1.3 Lines in Convex Sets 6
 1.1.4 Faces ... 8
 1.2 Polyhedra ... 10
 1.2.1 Convex Polyhedra 10
 1.2.2 Simplicial Complexes 13
 1.2.3 Polyhedral Cones 13
 1.2.4 A Dual Picture 15
 1.3 Variable Polytopes ... 16
 1.3.1 Two Families of Polytopes 16
 1.3.2 Faces ... 17
 1.3.3 Cells and Strongly Regular Points 18
 1.3.4 Vertices of $Π_X(b)$ 21
 1.3.5 Piecewise Polynomial Functions 23

2 Hyperplane Arrangements 25
 2.1 Arrangements .. 25
 2.1.1 Hyperplane Arrangements 25
 2.1.2 Real Arrangements 27
 2.1.3 Graph Arrangements 29
 2.1.4 Graphs Are Unimodular 31
 2.2 Matroids ... 33
 2.2.1 Cocircuits ... 34
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.2 Unbroken Bases</td>
<td>35</td>
</tr>
<tr>
<td>2.2.3 Tutte Polynomial</td>
<td>37</td>
</tr>
<tr>
<td>2.2.4 Characteristic Polynomial</td>
<td>41</td>
</tr>
<tr>
<td>2.2.5 Identities</td>
<td>43</td>
</tr>
<tr>
<td>2.3 Zonotopes</td>
<td>44</td>
</tr>
<tr>
<td>2.3.2 $B(X)$ in the Case of Lattices</td>
<td>51</td>
</tr>
<tr>
<td>2.4 Root Systems</td>
<td>55</td>
</tr>
<tr>
<td>2.4.2 The Volume of $B(X)$</td>
<td>57</td>
</tr>
<tr>
<td>2.4.3 The External Activity and Tutte Polynomials</td>
<td>61</td>
</tr>
<tr>
<td>2.4.4 Exceptional Types</td>
<td>65</td>
</tr>
<tr>
<td>3 Fourier and Laplace Transforms</td>
<td>69</td>
</tr>
<tr>
<td>3.1 First Definitions</td>
<td>69</td>
</tr>
<tr>
<td>3.1.1 Algebraic Fourier Transform</td>
<td>69</td>
</tr>
<tr>
<td>3.1.2 Laplace Transform</td>
<td>70</td>
</tr>
<tr>
<td>3.1.3 Tempered Distributions</td>
<td>71</td>
</tr>
<tr>
<td>3.1.4 Convolution</td>
<td>72</td>
</tr>
<tr>
<td>3.1.5 Laplace Versus Fourier Transform</td>
<td>73</td>
</tr>
<tr>
<td>4 Modules over the Weyl Algebra</td>
<td>77</td>
</tr>
<tr>
<td>4.1 Basic Modules</td>
<td>77</td>
</tr>
<tr>
<td>4.1.1 The Polynomials</td>
<td>77</td>
</tr>
<tr>
<td>4.1.2 Automorphisms</td>
<td>78</td>
</tr>
<tr>
<td>4.1.3 The Characteristic Variety</td>
<td>80</td>
</tr>
<tr>
<td>5 Differential and Difference Equations</td>
<td>85</td>
</tr>
<tr>
<td>5.1 Solutions of Differential Equations</td>
<td>85</td>
</tr>
<tr>
<td>5.1.1 Differential Equations with Constant Coefficients</td>
<td>85</td>
</tr>
<tr>
<td>5.1.2 Families</td>
<td>90</td>
</tr>
<tr>
<td>5.2 Tori</td>
<td>91</td>
</tr>
<tr>
<td>5.2.1 Characters</td>
<td>91</td>
</tr>
<tr>
<td>5.2.2 Elementary Divisors</td>
<td>93</td>
</tr>
<tr>
<td>5.3 Difference Equations</td>
<td>96</td>
</tr>
<tr>
<td>5.3.1 Difference Operators</td>
<td>96</td>
</tr>
<tr>
<td>5.4 Recursion</td>
<td>101</td>
</tr>
<tr>
<td>5.4.1 Generalized Euler Recursion</td>
<td>101</td>
</tr>
<tr>
<td>6 Approximation Theory I</td>
<td>103</td>
</tr>
<tr>
<td>6.1 Approximation Theory</td>
<td>103</td>
</tr>
<tr>
<td>6.1.1 A Local Approximation Scheme</td>
<td>103</td>
</tr>
<tr>
<td>6.1.2 A Global Approximation Scheme</td>
<td>105</td>
</tr>
<tr>
<td>6.1.3 The Strang–Fix Condition</td>
<td>107</td>
</tr>
</tbody>
</table>
Part II The Differentiable Case

7 Splines .. 113
 7.1 Two Splines .. 113
 7.1.1 The Box Spline 113
 7.1.2 E-splines 115
 7.1.3 Shifted Box Spline 118
 7.1.4 Decompositions 119
 7.1.5 Recursive Expressions 120
 7.1.6 Smoothness 124
 7.1.7 A Second Recursion 125

8 R_X as a D-Module .. 127
 8.1 The Algebra R_X .. 127
 8.1.1 The Complement of Hyperplanes as Affine Variety 127
 8.1.2 A Prototype D-module............................. 128
 8.1.3 Partial Fractions 129
 8.1.4 The Generic Case 131
 8.1.5 The Filtration by Polar Order 132
 8.1.6 The Polar Part 137
 8.1.7 Two Modules in Correspondence 138

9 The Function T_X .. 141
 9.1 The Case of Numbers 141
 9.1.1 Volume .. 141
 9.2 An Expansion ... 142
 9.2.1 Local Expansion 142
 9.2.2 The Generic Case 143
 9.2.3 The General Case 144
 9.3 A Formula for T_X 145
 9.3.1 Jeffrey–Kirwan Residue Formula 145
 9.4 Geometry of the Cone 150
 9.4.1 Big Cells ... 150

10 Cohomology ... 155
 10.1 De Rham Complex 155
 10.1.1 Cohomology 155
 10.1.2 Poincaré and Characteristic Polynomial 157
 10.1.3 Formality .. 158
 10.2 Residues .. 159
 10.2.1 Local Residue 160
11 Differential Equations .. 163
 11.1 The First Theorem .. 163
 11.1.1 The Space $D(X)$.. 163
 11.2 The Dimension of $D(X)$ 165
 11.2.1 A Remarkable Family 166
 11.2.2 The First Main Theorem 167
 11.2.3 A Polygraph .. 169
 11.2.4 Theorem 11.8 .. 171
 11.3 A Realization of A_X 171
 11.3.1 Polar Representation 171
 11.3.2 A Dual Approach .. 174
 11.3.3 Parametric Case .. 177
 11.3.4 A Filtration .. 177
 11.3.5 Hilbert Series ... 178
 11.4 More Differential Equations 179
 11.4.1 A Characterization 179
 11.4.2 Regions of Polynomiality 181
 11.4.3 A Functional Interpretation 182
 11.5 General Vectors .. 183
 11.5.1 Polynomials ... 183
 11.5.2 Expansion .. 183
 11.5.3 An Identity ... 185
 11.5.4 The Splines ... 185
 11.5.5 A Hyper-Vandermonde Identity 186

Part III The Discrete Case

12 Integral Points in Polytopes 191
 12.1 Decomposition of an Integer 191
 12.1.1 Euler Recursion ... 191
 12.1.2 Two Strategies ... 193
 12.1.3 First Method: Development in Partial Fractions 194
 12.1.4 Second Method: Computation of Residues 195
 12.2 The General Discrete Case 196
 12.2.1 Pick’s Theorem and the Ehrhart Polynomial 196
 12.2.2 The Space $C[A]$ of Bi-infinite Series 197
 12.2.3 Euler Maclaurin Sums 200
 12.2.4 Brion’s Theorem ... 202
 12.2.5 Ehrhart’s Theorem 205
13 The Partition Functions .. 207
 13.1 Combinatorial Theory .. 207
 13.1.1 Cut-Locus and Chambers 207
 13.1.2 Combinatorial Wall Crossing 208
 13.1.3 Combinatorial Wall Crossing II 209
 13.2 The Difference Theorem 211
 13.2.1 Topes and Big Cells 211
 13.2.2 A Special System 212
 13.2.3 On $DM(X)$.. 214
 13.2.4 A Categorical Interpretation 217
 13.3 Special Functions ... 217
 13.3.1 Convolutions and the Partition Function 218
 13.3.2 Constructing Elements in $DM(X)$ 219
 13.4 A Remarkable Space .. 221
 13.4.1 A Basic Formula 221
 13.4.2 The Abelian Group $\mathcal{F}(X)$ 222
 13.4.3 Some Properties of $\mathcal{F}(X)$ 223
 13.4.4 The Main Theorem 224
 13.4.5 Localization Theorem 226
 13.4.6 Wall-Crossing Formula 229
 13.4.7 The Partition Function 231
 13.4.8 The space $\tilde{\mathcal{F}}(X)$ 233
 13.4.9 Generators of $\tilde{\mathcal{F}}(X)$ 234
 13.4.10 Continuity .. 235
 13.5 Reciprocity ... 236
 13.5.1 The Reciprocity Law 236
 13.6 Appendix: a Complement 238
 13.6.1 A Basis for $DM(X)$ 238

14 Toric Arrangements .. 241
 14.1 Some Basic Formulas ... 241
 14.1.1 Laplace Transform and Partition Functions 241
 14.1.2 The Coordinate Algebra 242
 14.2 Basic Modules and Algebras of Operators 244
 14.2.1 Two Algebras as Fourier Transforms 244
 14.2.2 Some Basic Modules 246
 14.2.3 Induction ... 248
 14.2.4 A Realization .. 251
 14.3 The Toric Arrangement .. 252
 14.3.1 The Coordinate Ring as a $\tilde{W}(\Lambda)$ Module 252
 14.3.2 Two Isomorphic Modules 259
 14.3.3 A Formula for the Partition Function \mathcal{T}_X 260
 14.3.4 The Generic Case 261
 14.3.5 Local Reciprocity Law 265
Contents

15 Cohomology of Toric Arrangements

- 15.1 de Rham Complex
 - 15.1.1 The Decomposition
- 15.2 The Unimodular Case
 - 15.2.1 A Basic Identity
 - 15.2.2 Formality

16 Polar Parts

- 16.1 From Volumes to Partition Functions
 - 16.1.1 $DM(X)$ as Distributions
 - 16.1.2 Polar Parts
 - 16.1.3 A Realization of $\mathbb{C}[A]/J_x$
 - 16.1.4 A Residue Formula
 - 16.1.5 The Operator Formula
 - 16.1.6 Local Reciprocity
- 16.2 Roots of Unity
 - 16.2.1 Dedekind Sums
- 16.3 Back to Decomposing Integers
 - 16.3.1 Universal Formulas
 - 16.3.2 Some Explicit Formulas
 - 16.3.3 Computing Dedekind Sums
- 16.4 Algorithms
 - 16.4.1 Rational Space $DM_{Q}(X)$

Part IV Approximation Theory

17 Convolution by $B(X)$

- 17.1 Some Applications
 - 17.1.1 Partition of 1
 - 17.1.2 Semidiscrete Convolution
 - 17.1.3 Linear Independence

18 Approximation by Splines

- 18.1 Approximation Theory
 - 18.1.1 Scaling
 - 18.1.2 Mesh Functions and Convolution
 - 18.1.3 A Complement on Polynomials
 - 18.1.4 Superfunctions
 - 18.1.5 Approximation Power
 - 18.1.6 An Explicit Superfunction
 - 18.1.7 Derivatives in the Algorithm
- 18.2 Super and Nil Functions
 - 18.2.1 Nil Functions
- 18.3 Quasi-Interpolants
18.3.1 Projection Algorithms .. 329
18.3.2 Explicit Projections .. 330

19 Stationary Subdivisions ... 333
19.1 Refinable Functions and Box Splines 333
 19.1.1 Refinable Functions 333
 19.1.2 Cutting Corners .. 335
 19.1.3 The Box Spline .. 337
 19.1.4 The Functional Equation 339
 19.1.5 The Role of Box Splines 341

Part V The Wonderful Model

20 Minimal Models ... 347
 20.1 Irreducibles and Nested Sets 347
 20.1.1 Irreducibles and Decompositions 347
 20.1.2 Nested Sets ... 348
 20.1.3 Non Linear Coordinates 351
 20.1.4 Proper Nested Sets 351
 20.2 Residues and Cycles ... 353
 20.3 A Special Case: Graphs and Networks 354
 20.3.1 Complete Sets .. 354
 20.3.2 Irreducible Graphs 355
 20.3.3 Proper Maximal Nested Sets 356
 20.3.4 Two Examples: \(A_n \) and Magic Arrangements 357
 20.4 Wonderful Models .. 362
 20.4.1 A Minimal Model 362
 20.4.2 The Divisors ... 366
 20.4.3 Geometric Side of Residues 368
 20.4.4 Building Sets .. 368
 20.4.5 A Projective Model 369

References .. 373

Index ... 381
The main purpose of this book is to bring together some areas of research that have developed independently over the last 30 years. The central problem we are going to discuss is that of the computation of the number of integral points in suitable families of variable polytopes. This problem is formulated in terms of the study of partition functions. The partition function $T_X(b)$, associated to a finite set of integral vectors X, counts the number of ways in which a variable vector b can be written as a linear combination of the elements in X with positive integer coefficients. Since we want this number to be finite, we assume that the vectors X generate a pointed cone $C(X)$.

Special cases were studied in ancient times, and one can look at the book of Dickson [50] for historical information on this topic.

The problem goes back to Euler in the special case in which X is a list of positive integers, and in this form it was classically treated by several authors, such as Cayley, Sylvester [107] (who calls the partition function the *quotity*), Bell [15] and Ehrhart [53], [54].

Having in mind only the principal goal of studying the partition functions, we treat several topics but not in a systematic way, by trying to show and compare a variety of different approaches. In particular, we want to revisit a sequence of papers of Dahmen and Micchelli, which for our purposes, culminate in the proof of a slightly weaker form of Theorem 13.54, showing the quasipolynomial nature of partition functions [37] on suitable regions of space.

The full statement of Theorem 13.54 follows from further work of Szenes and Vergne [110].

This theory was approached in a completely different way a few years later by various authors, unaware of the work of Dahmen and Micchelli. We present an approach taken from a joint paper with M. Vergne [44] in Section 13.4.5, which has proved to be useful for further applications to the index theory.

In order to describe the regions where the partition function is a quasipolynomial, one needs to introduce a basic geometric and combinatorial object: the zonotope $B(X)$ generated by X. This is a compact polytope defined in
2.12. The theory then consists in dividing \(C(X) \) into regions \(\Omega \), called big cells, such that in each region \(\Omega - B(X) \), the partition function is a quasipolynomial (see Definition 5.31).

The quasipolynomials appearing in the description of the partition function satisfy a natural system of difference equations of a class that in the multidimensional case we call Eulerian (generalizing the classical one-dimensional definition); see Theorem 5.32. All these results can be viewed as generalizations of the theory of the Ehrhart polynomial [53], [54].

The approach of Dahmen and Micchelli to partition functions is inspired by their study of two special classes of functions: the multivariate spline \(T_X(x) \), supported on \(C(X) \), and the box spline \(B_X(x) \), supported on \(B(X) \), originally introduced by de Boor and deVore [39]; see Section 7.1.1 for their definition.

These functions, associated to the given set of vectors \(X \), play an important role in approximation theory. One of the goals of the theory is to give computable closed formulas for all these functions and at the same time to describe some of their qualitative behavior and applications.

These three functions can be described in a combinatorial way as a finite sum over local pieces (see formulas (9.5) and (14.28)). In the case of \(B_X(x) \) and \(T_X(x) \) the local pieces span, together with their derivatives, a finite-dimensional space \(D(X) \) of polynomials. In the case of \(T_X(b) \) they span, together with their translates, a finite-dimensional space \(DM(X) \) of quasipolynomials.

A key fact is the description of:

- \(D(X) \) as solutions of a system of differential equations by formula (11.1).
- \(DM(X) \) as solutions of a system of difference equations by formula (13.3).
- A strict relationship between \(D(X) \) and \(DM(X) \) in Section 16.1.

In particular, Dahmen and Micchelli compute the dimensions of both spaces, see Theorem 11.8 and 13.21. This dimension has a simple combinatorial interpretation in terms of \(X \). They also decompose \(DM(X) \) as a direct sum of natural spaces associated to certain special points \(P(X) \) in the torus whose character group is the lattice spanned by \(X \). In this way, \(DM(X) \) can be identified with a space of distributions supported at these points. Then \(D(X) \) is the subspace of \(DM(X) \) of the elements supported at the identity. The papers of Dahmen and Micchelli are a development of the theory of splines, initiated by I.J. Schoenberg [95]. There is a rather large literature on these topics by several authors, such as A.A. Akopyan; A. Ben-Artzi, C.K. Chui, C. De Boor, H. Diamond, N. Dyn, K. Höllig, Rong Qing Jia, A. Ron, and A.A. Saakyan. The interested reader can find a lot of useful historical information about these matters and further references in the book [40] (and also the notes of Ron [93]).

The results about the spaces \(D(X) \) and \(DM(X) \), which, as we have mentioned, originate in the theory of splines, turn out to have some interest also in
the theory of hyperplane arrangements and in commutative algebra in connection with the study of certain Reisner–Stanley algebras [43]. Furthermore, the space $DM(X)$ has an interpretation in the theory of the index of transversally elliptic operators (see [44]).

The fact that a relationship between this theory and hyperplane arrangements should exist is pretty clear once we consider the set of vectors X as a set of linear equations that define an arrangement of hyperplanes in the space dual to that in which X lies. In this respect we have been greatly inspired by the results of Orlik–Solomon on cohomology [84], [83] and those of Brion, Szenes, Vergne on partition functions [109], [110], [27], [22], [28], [29], [26], [108].

In fact, a lot of work in this direction originated from the seminal paper of Khovanskii and Pukhlikov [90] interpreting the counting formulas for partition functions as Riemann–Roch formulas for toric varieties, and of Jeffrey–Kirwan [68] and Witten [120], on moment maps. These topics are beyond the scope of this book, which tries to remain at a fairly elementary level. For these matters the reader may refer to Vergne’s survey article [116].

Due to the somewhat large distance between the two fields, people working in hyperplane arrangements do not seem to be fully aware of the results on the box spline.

On the other hand, there are some methods that have been developed for the study of arrangements that we believe shed some light on the space of functions used to build the box spline. Therefore, we feel that this presentation may be useful in making a bridge between the two theories.

For completeness and also to satisfy our personal curiosity, we have also added a short discussion on the applications of box splines to approximation theory and in particular the aspect of the finite element method, which comes from the Strang–Fix conditions (see [106]). In Section 18.1 we present a new approach to the construction of quasi-interpolants using in a systematic way the concept of superfunction.

Here is a rough description of the method we shall follow to compute the functions that are the object of study of this book.

- We interpret all the functions as tempered distributions supported in the pointed cone $C(X)$.
- We apply the Laplace transform and change the problem to one in algebra, essentially a problem of developing certain special rational functions into partial fractions.
- We solve the algebraic problems by module theory under the algebra of differential operators or of difference operators.
- We interpret the results by inverting the Laplace transform directly.

The book consists of five parts.
In the first part we collect basic material on convex sets, combinatorics and polytopes, the Laplace and Fourier transforms, and the language of modules over the Weyl algebra. We then recall some simple foundational facts on suitable systems of partial differential equations with constant coefficients. We develop a general approach to linear difference equations and give a method of reduction to the differentiable case (Section 5.3). We discuss in some detail the classical Tutte polynomial of a matroid and we take a detour to compute such a polynomial in the special case of root systems. The reader is advised to use these chapters mainly as a tool and reference to read the main body of the book. In particular, Chapter 6 is used only in the fourth part.

In the second part, on the differentiable case, we start by introducing and studying the splines. We next analyze the coordinate ring of the complement of a hyperplane arrangement using the theory of modules over the Weyl algebra. We apply this analysis to the computation of the multivariate splines. We next give a simple proof of the theorem of Dahmen–Micchelli on the dimension of $D(X)$ using elementary commutative algebra (Theorem 11.13), and discuss the similar theory of E-splines due to Amos Ron [92].

After this, we discuss the graded dimension of the space $D(X)$ (Theorem 11.13) in terms of the combinatorics of bases extracted from X. This is quite similar to the treatment of Dyn and Ron [51]. The answer happens to be directly related to the classical Tutte polynomial of a matroid introduced in the first part. We next give an algorithmic characterization in terms of differential equations of a natural basis of the top-degree part of $D(X)$ (Proposition 11.10), from which one obtains explicit local expressions for T_X (Theorem 9.7). We complete the discussion by presenting a duality between $D(X)$ and a subspace of the space of polar parts relative to the hyperplane arrangement associated to X (Theorem 11.20), a space which can also be interpreted as distributions supported on the regular points of the associated cone $C(X)$.

The third part, on the discrete case, contains various extensions of the results of the second part in the case in which the elements in X lie in a lattice. This leads to the study of toric arrangements, which we treat by module theory in a way analogous to the treatment of arrangements. Following a joint paper with M. Vergne [44], we discuss another interesting space of functions on a lattice that unifies parts of the theory and provides a conceptual proof of the quasipolynomial nature of partition functions on the sets $\Omega - B(X)$.

We next explain the approach (due mainly to Szenes–Vergne) (see Theorem 10.11 and Formula (16.3)) of computing the functions under study via residues.

We give an explicit formula relating partition functions to multivariate splines (Theorem 16.12) which is a reinterpretation, with a different proof, of the formula of Brion–Vergne [27]. We use it to discuss classical computations including Dedekind sums and generalizations.

As an application of our methods, we have included two independent chapters, one in the second and one in the third part, in which we explain how to
compute the de Rham cohomology for the complement of a hyperplane or of a toric arrangement.

The fourth and fifth parts essentially contain complements. The fourth part is independent of the third. In it we present a short survey of the connections and applications to approximation theory: the role of the Strang–Fix conditions and explicit algorithms used to approximate functions by splines, such as, for example, can be found in the book *Box Splines* [40]. We also discuss briefly some other applications, such as the theory of stationary subdivision.

The fifth and final part is completely independent of the rest of the book. It requires some basic algebraic geometry, and it is included because it justifies in a geometric way the theory of Jeffrey–Kirwan residues which we have introduced as a purely computational tool, and the regularization of certain integrals. Here we give an overview of how the residues appear in the so-called *wonderful models* of subspace arrangements. These are particularly nice compactifications of complements of hyperplane arrangements that can be used to give a geometric interpretation of the theory of residues.

As the reader will notice, there is a class of examples which we investigate throughout this book. These are *root systems*. We decided not to give the foundations of root systems, since several excellent introductions are available in the literature, such as, for example, [20] or [67].

Finally, let us point out that there is an overlap between this material and other treatments, as for instance the recent book by Matthias Beck and Sinai Robins, in the Springer Undergraduate Texts in Mathematics series: *Computing, the Continuous Discretely. Integer-Point Enumeration in Polyhedra* [14].

The actual computation of partition functions or of the number of points in a given polytope is a very difficult question due to the high complexity of the problem. A significant contribution is found in the work of Barvinok [12], [10], [8], [9], [11] and in the papers of Baldoni, De Loera, Cochet, Vergne, and others (see [6], [34], [48]). We will not discuss these topics here. A useful survey paper is the one by Jésus A. De Loera [47].

Acknowledgments

We cannot finish this preface without expressing our sincere thanks to various colleagues and friends. First, Michèle Vergne, who through various lectures and discussions arouse our interest in these matters. We also thank Welleda Baldoni and Charles Cochet for help in computational matters, Carla Manni for pointing out certain aspects of quasi-interpolants, Amos Ron for sharing his notes, and Carl de Boor for useful suggestions on the literature. Finally,
we thank several colleagues who pointed out some unclear points: Alberto De Sole, Mario Marietti, Enrico Rogora, Damiano Testa, and Ramadas Trivandrum.

Although we have made an effort to give proper attributions, we may have missed some important contributions due to the rather large span of the existing literature, and we apologize if we have done so.

The authors are partially supported by the Cofin 40%, MIUR.

Corrado de Concini
Claudio Procesi
Notations

When we introduce a new symbol or definition we will use the convenient form :=, which means that the term introduced at its left is defined by the expression at its right.

A typical example is $P := \{ x \in \mathbb{N} \mid 2 \text{ divides } x \}$, which stands for *P is by definition the set of all natural numbers x such that 2 divides x.*

The symbol $\pi : A \to B$ denotes a mapping named π from the set A to the set B.

Given two sets A, B we set

$$A \setminus B := \{ a \in A \mid a \notin B \}.$$

We use the standard notation

$$\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$$

for the natural numbers (including 0), the integers, and the rational, real, and complex numbers.

When V is a vector space we denote by V^* its dual. The canonical pairing between $\phi \in V^*$ and $v \in V$ will be denoted by $\langle \phi \mid v \rangle$ or sometimes by $\phi(v)$ when we want to stress ϕ as a function.

For a finite set A we denote by $|A|$ its cardinality.

Given two points a, b in a real vector space V we have the closed segment $[a, b] := \{ ta + (1-t)b, \ 0 \leq t \leq 1 \}$ the open segment $(a, b) := \{ ta + (1-t)b, \ 0 < t < 1 \}$, and the two half-open segments $[a, b) := \{ ta + (1-t)b, \ 0 < t \leq 1 \}, (a, b] := \{ ta + (1-t)b, \ 0 \leq t < 1 \}$.

The closure of a set C in a topological space is denoted by \overline{C}.

The interior of a set C in a topological space is denoted by $\overset{\circ}{C}$.

Sets and lists: Given a set A, we denote by χ_A its characteristic function. The notation $A := \{ a_1, \ldots, a_k \}$ denotes a set called A with elements the a_i while the notation $A := (a_1, \ldots, a_k)$ denotes a list called A with elements the a_i. The elements a_i appear in order and may be repeated. A sublist of A is a list $(a_{i_1}, \ldots, a_{i_r})$ with $1 \leq i_1 < \cdots < i_r \leq k$.

WARNING: By abuse of notation, when X is a list we shall also denote a sublist Y by writing $Y \subset X$ and by $X \setminus Y$ the list obtained from X by removing the sublist Y.