Photonic Microsystems
Micro and Nanotechnology Applied to Optical Devices and Systems
MEMS Reference Shelf

Series Editors:

Stephen D. Senturia
Professor of Electrical Engineering, Emeritus
Massachusetts Institute of Technology
Cambridge, Massachusetts

Robert T. Howe
Department of Electrical Engineering
Stanford University
Stanford, California

Antonio J. Ricco
Small Satellite Division
NASA Ames Research Center
Moffett Field, California

Photonic Microsystems: Micro and Nanotechnology Applied to Optical Devices and Systems
Olav Solgaard

MEMS Vibratory Gyroscopes Structural Approaches to Improve Robustness
Cenk Acar and Andrei Shkel

BioNanoFluidic MEMS
Peter Hesketh, ed.

Microfluidic Technologies for Miniaturized Analysis Systems
Edited by Steffen Hardt and Friedhelm Schöenfeld, eds.

Forthcoming Titles

Self-assembly from Nano to Milli Scales
Karl F. Böhringer

Micro Electro Mechanical Systems: A Design Approach
Kanakasabapathi Subramanian
ISBN 978-0-387-32476-0

Experimental Characterization Techniques for Micro-Nanoscale Devices
Kimberly L. Turner and Peter G. Hartwell

Microelectroacoustics: Sensing and Actuation
Mark Sheplak and Peter V. Loeppert

Inertial Microsensors
Andrei M. Shkel
Olav Solgaard

Photonic Microsystems
Micro and Nanotechnology Applied to Optical Devices and Systems

Springer
To Terri, Jenni, and Nikolai
Like many other engineers and inventors, I believe that the boundaries between traditional fields offer unique and exciting opportunities for innovation and new developments. This is almost self-evident when one considers complex systems that integrate functions from several domains. It is also natural that the boundaries between fields are less understood, simply because their study requires expertise in two or more fields.

From this last observation, it follows that interdisciplinary research is hard. It requires dedicated individuals who are willing to make the heavy investments necessary to master several fields of inquiry, or, something even more extraordinary, teams that are able to smoothly communicate across disciplinary boundaries. This is the defining problem of the book. It is written to encourage and facilitate interdisciplinary research on optical microsystems, by which we mean optics created using microfabrication technology, i.e. the tools and techniques developed to fabricate Integrated Circuits (ICs) and MicroElectroMechanical (MEMS).

Innovation and design of modern optical systems requires input from many fields, as well as specific application knowledge. Examples include optical interconnects, optical-fiber communication networks, digital projectors, and imagers for photography and microscopy. The design of these systems depends on seamless integration of optics with electronics and mechanics. The best solutions are optimized over all these domains to meet application demands. In the case of micro-optics, the interdisciplinary requirements are even stricter; these systems must be optimized for the Integrated Circuit (IC) and MicroElectroMechanical (MEMS) fabrication environment. A large part of that optimization is to reduce the dimensions of the optical-systems designs so that they can be practically and economically fabricated using IC and MEMS techniques.

This book gives students, researchers, and developers the tools they need to analyze and design micro-optical devices systems. Design is the ultimate “inverse” problem, so the emphasis is on analytical models that can be turned into design equations. The point is to enable interdisciplinary research, so very little background in optics, MEMS, or fabrication is assumed. The first part on optics fundamentals is accessible to readers with an understanding of first-year, university-level physics. The book is self-contained in that the concepts developed in the first part give the necessary background for understanding the detailed descriptions of the second and third parts.
Acknowledgements

This book would not be possible if it were not for my collaborators at Stanford, UC Berkeley, UC Davis, the University of Oslo, and at SINTEF in Oslo. Their brilliant insights and stimulating discussions have been a constant source of inspiration, and I am forever grateful for being able to work in the exciting environment that they create. For as much as I have learned from my colleagues, I believe my students taught me more. Working with such a talented group has been a true privilege and I thank all of them for the time and effort they invested and for their many contributions. A special thanks also goes to the reviewers of this text. They made it better in many ways and therefore more enjoyable for the reader.

Being a teacher, I believe in the power of good mentors, and I have been lucky to learn from some of the best. During my years as a post doc at Berkeley, I worked with Professors Kam Lau and Richard Muller. Between these two leading experts, the fields of semiconductor lasers and MEMS were opened to me. In addition to their technical advice, I owe them both for creating an inspiring and demanding environment and for encouraging me to following my own ideas. But my biggest debt of gratitude goes to my PhD advisor, Professor David Bloom. He, more than anyone else, taught me that it is always possible to improve the status quo, that even crazy ideas can be harnessed, and that the best solutions are often found in unlikely places.
6.2.7 Coupling from Spatially Incoherent Sources to Single Mode Fibers
6.2.8 Prism Coupling
6.2.9 Grating Coupling
6.3 Coupled Optical Modes
6.4 Directional Couplers
6.4.1 Coupled Mode Description of Directional Couplers
6.4.2 Eigenmodes of the Coupled System
6.4.3 Conceptual Description of Directional Couplers based on Eigen Modes
6.5 Optical Devices Based on Directional Couplers
6.5.1 Modulators and Switches based on Directional Couplers
6.5.2 Power Combiners and Filters based on Directional Couplers
6.6 Periodic Waveguides – Bragg Filters
6.6.1 Energy Conservation in Counter Propagating Waves
6.6.2 Modes of the Bragg Grating
6.6.3 One-Dimensional Photonic Bandgaps
6.6.4 Bragg Filters
6.7 Waveguide Modulators
6.7.1 Mach-Zender modulators
6.7.2 Figures of Merit for Optical Modulators
6.7.3 Phase Modulation
6.7.4 Acoustooptic Modulators
6.7.5 Modified Mach-Zender Modulators
6.7.6 Directional Coupler Switches
6.7.7 Fabry-Perot Modulator
6.7.8 Resonant Waveguide Coupling
6.8 Summary of Fiber and Waveguide Devices
Exercises
References:

7 Optical MEMS Scanners
7.1 Introduction to MEMS Scanners
7.2 Scanner Resolution
7.2.1 Resolution of an Ideal Scanner
7.2.2 Optimum Resolution of a Scanned Gaussian Beam
7.2.3 Scanner Aperture
7.2.4 Surface Roughness, Curvature, and Bending of Micro Mirrors
7.3 Reflectivity of Metal Coated Micromirrors
7.4 Lens Scanners
7.5 Mechanical Scanner Design – One Dimensional Scanners
7.5.1 Transformation from Linear Motion to Rotation
7.5.2 Torsional Spring Design
7.5.3 Mechanical Resonances .. 275
7.5.4 Higher-Order Mechanical Resonances .. 278
7.6 Two Dimensional Scanners .. 281
7.7 High Resolution 2-D Scanners – Design Examples 284
 7.7.1 Gimbaled Scanner .. 284
 7.7.2 Universal Joint Microscanner with “Terraced-Plate”
 Actuators .. 287
 7.7.3 Universal Joint Microscanner with Combdrive Actuators 288
7.8 Summary of MEMS scanners .. 289
Exercises ... 291
References ... 293

8 Optical MEMS Fiber Switches .. 296
 8.1 Introduction to MEMS Fiber Switches .. 296
 8.2 Fiber Optical Switches and Cross Connects 297
 8.3 MEMS Switch Architectures .. 299
 8.4 2 by 2 Matrix Switch .. 304
 8.4.1 Fiber Separation in 2 by 2 MEMS Switches 304
 8.4.2 Mirror Thickness in 2 by 2 Matrix Switches 306
 8.4.3 Low-loss 2 by 2 Matrix Switches 308
 8.4.4 MEMS Implementation of 2 by 2 Fiber Switch 309
 8.5 N by N Matrix Switches ... 311
 8.5.1 Scaling of N by N Matrix Switch 313
 8.5.2 MEMS Implementations of N by N Matrix Switch 316
 8.6 N by N Beam Steering Switches ... 317
 8.6.1 Scaling of the Beam Steering Switch 318
 8.6.2 MEMS Implementations of the N by N Beam Steering
 Switch .. 325
 8.7 Summary of MEMS Fiber Switches ... 327
Exercises ... 329
References ... 331

9 Micromirror Arrays – Amplitude and Phase Modulation 332
 9.1 Introduction to Micromirror Arrays .. 332
 9.2 Amplitude Modulating Mirror Arrays ... 333
 9.2.1 Projection Display ... 334
 9.3 Projection of Micromirror Arrays .. 338
 9.3.1 The Point Spread Function .. 339
 9.3.2 Image formation with finite Point Spread Functions 344
 9.3.3 Projection of a Gaussian Source 345
 9.3.4 Projection of a Gaussian Micromirror 347
 9.3.5 Projection of a 1-D Gaussian Source 349
 9.4 Micromirrors with Phase Modulation ... 349
 9.4.1 Projection of a Phase Step .. 350
9.4.2 Projection of a Phase Modulated Line..353
9.4.3 Sub-Pixel Shifts in Phase-Modulated Micromirror arrays........................356
9.5 Projection of Micromirrors through Hard Apertures356
9.6 Adaptive Optics ..358
 9.6.1 Micromirror Arrays for Adaptive Optics...360
9.7 Phase vs. Amplitude Modulation ..362
 9.7.1 Diffractive Optical MEMS ..364
9.8 Summary of Micromirror Arrays ..368
Exercises ...369
References ..371

10 Grating Light Modulators ..374
 10.1 Introduction to Grating Light Modulators ..374
 10.2 Phenomenological Description of MEMS Grating Modulators374
 10.2.1 Mechanical design and actuation of Grating Light Modulators374
 10.2.2 Optical Design and Operation of Grating Light Modulators377
 10.2.3 Schlieren Projection System ...379
 10.3 Phasor Representation of Grating Modulator Operation380
 10.4 High Contrast Grating Light Modulator ..386
 10.5 Diffraction gratings ..389
 10.6 Projection Displays Based on Grating Modulators393
 10.6.1 Actuator Design ..403
 10.6.2 Ribbon Mechanics ...407
 10.6.3 Linear Display Architecture ...411
 10.6.4 1-D Modulator Array Fabrication ..414
 10.6.5 Light Sources for swept-line projection displays418
 10.7 Summary of Grating Light Modulators ...422
Exercises ...423
References ..425

11 Grating Light Modulators for Fiber Optics ..428
 11.1 Fiber Optic Modulators ...428
 11.2 Low Dispersion Grating Light Modulators ..430
 11.2.1 Three-level Grating Light Modulator ...430
 11.2.2 Optimum Design of Three-Level Grating Modulator 433
 11.2.3 Contrast in the Three-level Grating Modulator 435
 11.2.4 Wavelength Dependence of Attenuation ..437
 11.2.5 Alternative Modulator Architectures ...439
 11.3 Polarization Independent Grating Light Modulators440
 11.4 Summary of GLMS for Fiber Optics ...444
Further Reading ..444
Exercises ...445
12 Optical Displacement Sensors

12.1 Introduction to Optical Displacement Sensors .. 448
12.2 Interferometers as Displacement Sensors ... 451
 12.2.1 The Michelson Interferometer ... 451
 12.2.2 Displacement Sensitivity .. 454
 12.2.3 Implementations of Interferometric Displacement Sensors ... 455
 12.2.4 Improved Sensitivity of High-Finesse Interferometers .. 460
 12.2.5 Effect of Apertures in Interferometers .. 466
12.3 Optical Lever .. 469
 12.3.1 Displacement and Angle Sensitivity of the Optical Lever .. 471
 12.3.2 Grating Optical Lever ... 472
12.4 Sources of Noise in Displacement Measurements .. 473
 12.4.1 Thermal Noise ... 474
 12.4.2 Shot Noise ... 475
 12.4.3 Relative Intensity Noise .. 475
12.5 Signal-to-Noise Ratio .. 476
 12.5.1 Noise Equivalent Power .. 478
12.6 Detection Limits in displacement measurements ... 479
 12.6.1 Resolution of Optical Interferometers ... 479
 12.6.2 Resolution of Optical Levers ... 481
 12.6.3 Resolution of Capacitive Sensors ... 481
 12.6.4 Resolution of Piezoresistive Sensors ... 483
 12.6.5 Comparison of Displacement Sensors .. 485
12.7 Summary of Optical Displacement Sensors .. 486
Exercises ... 487
References: ... 489

13 Micro-Optical Filters

13.1 Introduction to Micro-Optical Filters ... 490
13.2 Amplitude Filters .. 491
 13.2.1 Fabry-Perot Filters ... 491
 13.2.2 Bragg Filters ... 495
 13.2.3 Microresonator Filters .. 495
13.3 Dispersion compensators .. 498
13.4 MEMS Spectrometers ... 500
 13.4.1 Swept Pass Band Spectrometers .. 501
 13.4.2 Generalized Transform Spectrometers .. 502
 13.4.3 Fourier Transform Spectrometers .. 503
 13.4.4 MEMS Implementations of Transform Spectrometers .. 507
13.5 Diffractive Spectrometers ... 511
 13.5.1 Spectral Synthesis ... 511
13.2 Diffractive MEMS Spectrometers.. 514
13.6 Tunable lasers .. 517
 13.6.1 MEMS Vertical Cavity Surface Emitting Lasers 518
 13.6.2 MEMS External Cavity Semiconductor Diode Lasers........ 519
 13.6.3 Tunable External Cavity Semiconductor Diode Lasers
 with Diffractive Filters ... 522
13.7 Summary of Microoptical Filters ... 523
Exercises .. 524
References ... 527

14 Photonic Crystal Fundamentals.. 532
 14.1 Introduction to Photonic Crystals .. 532
 14.2 Photonic Crystal Basics .. 533
 14.2.1 1-D Photonic Crystals .. 535
 14.2.2 Bloch States .. 538
 14.2.3 Band Structure of 2-D and 3-D Photonic Crystals 539
 14.3 Guided Resonances ... 543
 14.3.1 Reflection and Transmission through 2-D Photonic
 Crystals... 544
 14.3.2 Reflection and Transmission for a Mirror-Symmetric
 2-port with one Guided Resonance.. 546
 14.3.3 Reflection and Transmission for a Mirror-Symmetric
 2-port with two Guided Resonances 549
 14.3.4 Coupling to Guided Resonances – Symmetry 551
 14.4 Comparison of Photonic and Electronic Crystals 553
 14.5 Summary of PC fundamentals .. 555
Exercises .. 556
References ... 557

15 Photonic Crystal Devices and Systems 560
 15.1 Introduction to PC devices and systems 560
 15.2 IC Compatible Photonic Crystals 561
 15.2.1 Silicon Compatible 2-D Photonic Crystals 561
 15.2.2 3-D Structuring of Photonic Crystals 566
 15.3 Photonic Crystal Optical Components 567
 15.3.1 Mirrors and Filters .. 568
 15.3.2 Photonic Crystal Fabry-Perot Resonators 569
 15.3.3 PC Tunneling Sensors .. 570
 15.3.4 PC Polarization Optics .. 571
 15.3.5 PC Index Sensors .. 571
 15.4 Tunable Photonic Crystals .. 573
 15.4.1 Photonic Crystal MEMS Scanners 574
 15.4.2 Photonic Crystal Displacement Sensors 577
 15.5 Photonic Crystal Fiber Sensors ... 579
Appendix A Geometrical Optics...588

A.1 Introduction to Geometrical Optics...588
A.2 Geometrical Optics Treatment of Lenses..588
 A.2.1 Lens – Ray Picture .. 588
 A.2.2 Lenses – Wave Picture ... 589
 A.2.3 Ray Tracing.. 590
A.3 ABCD matrices..591
 A.3.1 Free space.. 592
 A.3.2 Slab of Index n ... 592
 A.3.3 Thin Lens .. 593
 A.3.4 Curved Mirror .. 594
 A.3.5 Combinations of Elements ... 594
 A.3.6 Reverse transmission:.. 595

Appendix B Electrostatic Actuation..596

B.1 The parallel Plate Capacitor..596
 B.1.1 Energy Storage in Parallel-Plate Capacitors............................ 597
B.2 The Parallel Plate Electrostatic Actuator .. 599
 B.2.1 Charge Control.. 600
 B.2.2 Voltage Control.. 602
B.3 Energy Conservation in the Parallel Plate Electrostatic Actuator.... 606
B.4 Electrostatic Spring..610
 B.4.1 Sensors Based on the Electrostatic Spring.............................. 613
B.5 Electrostatic Combdrives.. 614
B.6 Summary of Electrostatic Actuation.. 620
References.. 624

Index..626