Signal Processing Methods for Music Transcription
Contents

Preface .. ix

List of Contributors ... xi

Part I Foundations

1 Introduction to Music Transcription
Anssi Klapuri ... 3
1.1 Terminology and Concepts ... 7
1.2 Perspectives on Music Transcription 11
1.3 Outline .. 17

2 An Introduction to Statistical Signal Processing and Spectrum Estimation
Manuel Davy ... 21
2.1 Frequency, Time-Frequency, and Cepstral Representations .. 21
2.2 Basic Statistical Methods .. 28
2.3 Bayesian Statistical Methods ... 39
2.4 Pattern Recognition Methods .. 52

3 Sparse Adaptive Representations for Musical Signals
Laurent Daudet, Bruno Torrésani ... 65
3.1 Introduction .. 65
3.2 Parametric Representations ... 68
3.3 Waveform Representations ... 70
3.4 Conclusion ... 97
<table>
<thead>
<tr>
<th>Part II Rhythm and Timbre Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Beat Tracking and Musical Metre Analysis</td>
</tr>
<tr>
<td>Stephen Hainsworth</td>
</tr>
<tr>
<td>4.1 Introduction</td>
</tr>
<tr>
<td>4.2 Summary of Beat-Tracking Approaches</td>
</tr>
<tr>
<td>4.3 Musical Background to Rhythmic Structure</td>
</tr>
<tr>
<td>4.4 Onset Detection</td>
</tr>
<tr>
<td>4.5 Rule-Based Approaches</td>
</tr>
<tr>
<td>4.6 Autocorrelation Methods</td>
</tr>
<tr>
<td>4.7 Oscillating Filter Approaches</td>
</tr>
<tr>
<td>4.8 Histogramming Methods</td>
</tr>
<tr>
<td>4.9 Multiple Agent Approaches</td>
</tr>
<tr>
<td>4.10 Probabilistic Models</td>
</tr>
<tr>
<td>4.11 Comparison of Algorithms</td>
</tr>
<tr>
<td>4.12 Conclusions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5 Unpitched Percussion Transcription</th>
</tr>
</thead>
<tbody>
<tr>
<td>Derry FitzGerald, Jouni Paulus</td>
</tr>
<tr>
<td>5.1 Introduction</td>
</tr>
<tr>
<td>5.2 Pattern Recognition Approaches</td>
</tr>
<tr>
<td>5.3 Separation-Based Approaches</td>
</tr>
<tr>
<td>5.4 Musicological Modelling</td>
</tr>
<tr>
<td>5.5 Conclusions</td>
</tr>
<tr>
<td>5.6 Acknowledgements</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6 Automatic Classification of Pitched Musical Instrument Sounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfecto Herrera-Boyer, Anssi Klapuri, and Manuel Davy</td>
</tr>
<tr>
<td>6.1 Introduction</td>
</tr>
<tr>
<td>6.2 Methodology</td>
</tr>
<tr>
<td>6.3 Features and Their Selection</td>
</tr>
<tr>
<td>6.4 Classification Techniques</td>
</tr>
<tr>
<td>6.5 Classification of Isolated Sounds</td>
</tr>
<tr>
<td>6.6 Classification of Sounds from Music Files</td>
</tr>
<tr>
<td>6.7 Conclusions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part III Multiple Fundamental Frequency Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 Multiple Fundamental Frequency Estimation Based on Generative Models</td>
</tr>
<tr>
<td>Manuel Davy</td>
</tr>
<tr>
<td>7.1 Noisy Sum-of-Sines Models</td>
</tr>
<tr>
<td>7.2 Off-line Approaches</td>
</tr>
</tbody>
</table>
7.3 On-Line Approaches .. 217
7.4 Other On-Line Bayesian Approaches 225
7.5 Conclusions .. 227

8 Auditory Model-Based Methods for Multiple Fundamental Frequency Estimation
Anssi Klapuri ... 229
8.1 Introduction ... 229
8.2 Musical Sounds and F0 Estimation 231
8.3 Pitch Perception Models .. 234
8.4 Using an Auditory Model as a Front End 244
8.5 Computational Multiple F0 Estimation Methods 248
8.6 Conclusions .. 264

9 Unsupervised Learning Methods for Source Separation in Monaural Music Signals
Tuomas Virtanen .. 267
9.1 Introduction ... 267
9.2 Signal Model .. 268
9.3 Independent Component Analysis 274
9.4 Sparse Coding .. 278
9.5 Non-Negative Matrix Factorization 282
9.6 Prior Information about Sources 284
9.7 Further Processing of the Components 286
9.8 Time-Varying Components 289
9.9 Evaluation of the Separation Quality 294
9.10 Summary and Discussion 295

Part IV Entire Systems, Acoustic and Musicological Modelling

10 Auditory Scene Analysis in Music Signals
Kunio Kashino ... 299
10.1 Introduction .. 299
10.2 Strategy for Music Scene Analysis 304
10.3 Probabilistic Models for Music Scene Analysis 313
10.4 Conclusion: From Grouping to Generative Estimation 324

11 Music Scene Description
Masataka Goto ... 327
11.1 Introduction .. 327
11.2 Estimating Melody and Bass Lines 330
11.3 Estimating Beat Structure 341
11.4 Estimating Drums ... 342
11.5 Estimating Chorus Sections and Repeated Sections 342
Contents

11.6 Evaluation Issues ... 355
11.7 Applications of Music Scene Description 355
11.8 Conclusion .. 358

12 Singing Transcription

Matti Ryyänen † ... 361
12.1 Introduction ... 361
12.2 Singing Signals ... 364
12.3 Feature Extraction .. 368
12.4 Converting Features into Note Sequences 375
12.5 Summary and Discussion .. 390

References .. 391

Index .. 429
Signal processing techniques, and information technology in general, have undergone several scientific advances which permit us to address the very complex problem of automatic music transcription (AMT). During the last ten years, the interest in AMT has increased rapidly, and the time has come for a book-length overview of this subject.

The purpose of this book is to present signal processing algorithms dedicated to the various aspects of music transcription. AMT is a multifaceted problem, comprising several subtasks: rhythm analysis, multiple fundamental frequency analysis, sound source separation, musical instrument classification, and integration of all these into entire systems. AMT is, in addition, deeply rooted in fundamental signal processing, which this book also covers. As the field is quite wide, we have focused mainly on signal processing methods and Western polyphonic music. An extensive presentation of the work in musicology and music perception is beyond the scope of this book.

This book is mainly intended for researchers and graduate students in signal processing, computer science, acoustics, and music. We hope that the book will make the field easier to approach, providing a good starting point for newcomers, but also a comprehensive reference source for those already working in the field. The book is also suitable for use as a textbook for advanced courses in music signal processing. The chapters are mostly self-contained, and readers may want to read them in any order or jump from one to another at will. Whenever an element from another chapter is needed, an explicit reference is made to the relevant chapter. Chapters 1 and 2 provide some background of AMT and signal processing for the entire book, respectively. Otherwise, only a basic knowledge of signal processing is assumed.

Editing a book is a great deal of work. This volume was made possible by those who provided us support and help. We would like to thank Vaishali Damle and Ana Bozicevic at Springer for their help and support, and for their quick replies to our e-mails. Also thanks to Teemu Karjalainen for his practical assistance with \LaTeX.
Preface

Early versions of individual chapters were reviewed by the following people, whose valuable comments and suggestions are gratefully acknowledged:
- Michael Casey, Goldsmiths College, University of London, UK
- A. Taylan Cemgil, University of Cambridge, UK
- Alain de Cheveigné, Ecole Normale Supérieure, Paris, France
- Simon Dixon, Austrian Research Institute for Artificial Intelligence, Vienna
- Dan Ellis, Columbia University, New York
- Olivier Gillet, Télécom-Paris (ENST), Paris, France
- Aki Härnä, Philips Research Laboratories, Eindhoven, The Netherlands
- Marc Leman, Ghent University, Belgium
- Emanuele Pollastri, Erazero S.r.l., Milan, Italy

Thanks go also to the chapter authors, many of whom proofread another, related chapter in the book and provided helpful comments.

Tampere, Finland
Lille, France
December 2005

Anssi Klapuri
Manuel Davy
List of Contributors

Laurent Daudet
Laboratoire d'Acoustique Musicale
11 rue de Lourmel
75015 Paris, France
daudet@lam.jussieu.fr

Manuel Davy
LAGIS/CNRS
BP 48, Cité Scientifique
59651 Villeneuve d'Ascq Cedex
France
Manuel.Davy@ec-lille.fr

Derry FitzGerald
Cork Institute of Technology
Rossa Avenue
Bishopstown
Cork, Ireland
derry.fitzgerald@cit.ie

Masataka Goto
National Institute of Advanced Industrial Science and Technology (AIST)
1-1-1 Umezono, Tsukuba
Ibaraki 305-8568, Japan
m.goto@aist.go.jp

Stephen Hainsworth
Tillinghast-Towers Perrin
71 High Holborn
London WC1V 6TH, UK
swh21@cantab.net

Perfecto Herrera-Boyer
Institut Universitari de l'Audiovisual
Universitat Pompeu Fabra
Pg. Circumval-lació 8
08003 Barcelona, Spain
pherrera@iua.upf.es

Kunio Kashino 有NTT Communication Science Laboratories 数Nippon Telegraph and Telephone Corporation 3-1
Morinosato-Wakamiya
Atsugi, 243-0198, Japan
kunio@eye.brl.ntt.co.jp

Anssi Klapuri
Institute of Signal Processing
Tampere University of Technology
Korkeakoulunkatu 1
33720 Tampere, Finland
Anssi.Klapuri@tut.fi

Jouni Paulus
Institute of Signal Processing
Tampere University of Technology
Korkeakoulunkatu 1
33720 Tampere, Finland
Jouni.Paulus@tut.fi
Bruno Torrésani
Laboratoire d’Analyse
Topologie et Probabilités
CMI, Université de Provence
39 rue F. Joliot-Curie
13453 Marseille cedex 13, France
Bruno.Torresani@cmi.univ-mrs.fr

Matti Ryynänen
Institute of Signal Processing
Tampere University of Technology
Korkeakoulunkatu 1
33720 Tampere, Finland
Matti.Ryynanen@tut.fi

Tuomas Virtanen
Institute of Signal Processing
Tampere University of Technology
Korkeakoulunkatu 1
33720 Tampere, Finland
Tuomas.Virtanen@tut.fi