HUMAN IDENTIFICATION BASED ON GAIT
In our international and interconnected information society, there is an ever-growing need to authenticate and identify individuals. Biometrics-based authentication is emerging as the most reliable solution. Currently, there have been various biometric technologies and systems for authentication, which are either widely used or under development. The International Book Series on Biometrics will systematically introduce these relative technologies and systems, presented by biometric experts to summarize their successful experience, and explore how to design the corresponding systems with in-depth discussion.

In addition, this series aims to provide an international exchange for researchers, professionals, and industrial practitioners to share their knowledge of how to surf this tidal wave of information. The International Book Series on Biometrics will contain new material that describes, in a unified way, the basic concepts, theories and characteristic features of integrating and formulating the different facets of biometrics, together with its recent developments and significant applications. Different biometric experts, from the global community, are invited to write these books. Each volume will provide exhaustive information on the development in that respective area. The International Book Series on Biometrics will provide a balanced mixture of technology, systems and applications. A comprehensive bibliography on the related subjects will also be appended for the convenience of our readers.

Additional titles in the series:

FACIAL ANALYSIS FROM CONTINUOUS VIDEO WITH APPLICATIONS TO COMPUTATIONAL ALGORITHMS FOR FINGERPRINT RECOGNITION by Bir Bhanu and Xuejun Tan; ISBN: 1-4020-7651-7

Additional information about this series can be obtained from our website:
http://www.springeronline.com
HUMAN IDENTIFICATION BASED ON GAIT

by

Mark S. Nixon
University of Southampton, UK

Tieniu Tan
Chinese Academy of Sciences, Beijing, P. R. China

Rama Chellappa
University of Maryland, USA

Springer
Contents

Preface .. vii

1 Introduction ... 1
 1.1 Biometrics and Gait ... 1
 1.2 Contexts .. 2
 1.2.1 Immigration and Homeland Security .. 2
 1.2.2 Surveillance ... 2
 1.2.3 Human ID at a Distance (HiD) Program ... 3
 1.3 Book Structure .. 3

2 Subjects Allied to Gait ... 5
 2.1 Overview .. 5
 2.2 Literature ... 5
 2.3 Medicine and Biomechanics ... 6
 2.3.1 Basic Gait Analysis ... 6
 2.3.2 Variation in Gait Covariate Factors ... 10
 2.4 Psychology .. 12
 2.5 Computer Vision-Based Human Motion Analysis ... 13
 2.6 Other Subjects Allied to Gait ... 15

3 Gait Databases .. 17
 3.1 Early Databases ... 17
 3.1.1 UCSD Gait Data .. 17
 3.1.2 Early Soton Gait Data .. 18
 3.2 Current Databases ... 20
 3.2.1 Overall Design Considerations .. 20
 3.2.2 NIST/USF Database .. 21
 3.2.3 Soton Database .. 22
 Overview .. 22
 Laboratory Layout ... 24
 Outdoor Data Design Issues .. 27
 Acquisition Set-up Procedure ... 29
 Filming Issues ... 29
 Recording Procedure .. 30
 Ancillary Data .. 31
 3.2.4 CASIA Database ... 32
 3.2.5 UMD Database .. 33

4 Early Recognition Approaches ... 35
 4.1 Initial Objectives and Constraints ... 35
 4.2 Silhouette Based .. 35
 4.3 Model Based ... 39
5 Silhouette-Based Approaches ...45
5.1 Overview ...45
5.2 Extending Shape Description to Moving Shapes48
 5.2.1 Area Masks ..49
 5.2.2 Gait Symmetry ...51
 5.2.3 Velocity Moments ...53
 5.2.4 Results ...54
 Recognition by Area Masks ...55
 Recognition by Symmetry ...58
 Recognition by Velocity Moments61
 5.2.5 Potency of Measurements of Silhouette63
5.3 Procrustes and Spatiotemporal Silhouette Analysis65
 5.3.1 Automatic Gait Recognition Based on Procrustes Shape Analysis 65
 5.3.2 Silhouette Detection and Representation for Procrustes Analysis 66
 Silhouette Extraction ..66
 Representation of Silhouette Shapes68
 5.3.3 Procrustes Gait Feature Extraction and Classification69
 Procrustes Shape Analysis ..69
 Gait Signature Extraction ..69
 Similarity Measure and Classifier70
 5.3.4 Spatiotemporal Silhouette Analysis Based Gait Recognition 70
 Spatiotemporal Feature Extraction72
 Feature Extraction and Classification73
 5.3.5 Experimental Results and Analysis77
 Procrustes Shape Analysis ..77
 Spatiotemporal Silhouette Analysis82
5.4 Modeling, Matching, Shape and Kinematics89
 5.4.1 HMM Based Gait Recognition89
 Gait Recognition Framework ..90
 Direct Approach ..91
 Indirect Approach ...93
 5.4.2 DTW Based Gait Recognition94
 Gait Recognition Framework ..96
 5.4.3 Shape and Kinematics ...97
 Shape Analysis ..97
 Dynamical Models ..98
 5.4.4 Results ..100
 HMM Based Gait Recognition ..100
 DTW Based Gait Recognition ..102
 Shape and Kinematics ..104
6 Model-Based Approaches ..107
6.1 Overview ...107
6.2 Planar Human Modeling ..109
 6.2.1 Modeling Walking and Running109
 6.2.2 Model-Based Extraction and Description111
6.3 Kinematics-based People Tracking and Recognition in 3D Space ...114
 6.3.1 Model-based People Tracking using Condensation114
 Human Body Model ...115
Learning Motion Model and Motion Constraints 117
Experiments and Discussions ... 125
6.4 Other Approaches ... 131
 6.4.1 Structure by Body Parameters 132
 6.4.2 Structural Model-based Recognition 132

7 Further Gait Developments ... 135
 7.1 View Invariant Gait Recognition 135
 7.1.1 Overview of the Algorithm 136
 7.1.2 Optical flow based SfM approach 137
 7.1.3 Homography based approach 138
 7.1.4 Experimental Results .. 138
 7.2 Gait Biometric Fusion ... 141
 7.3 Fusion of Static and Dynamic Body Biometrics for Gait Recognition ... 144
 7.3.1 Overview of Approach 144
 7.3.2 Classifiers and Fusion Rules 145
 7.3.3 Experimental Results and Analysis 146

8 Future Challenges .. 151

References ... 157
 Literature .. 157
 Medicine and Biomechanics .. 157
 Covariate factors .. 158
 Psychology .. 159
 Computer Vision-Based Analysis of Human Motion 160
 Databases ... 161
 Early work .. 162
 Current approaches .. 163
 Further Analysis .. 166
 Other Related Work ... 169
 General .. 169

9 Appendices .. 171
 Appendix 9.1 Southampton Data Acquisition Forms 171
 Appendix 9.1.1 Laboratory Set-up Forms 171
 Appendix 9.1.2 Camera Set-up Forms 175
 Appendix 9.1.3 Session Coordinator’s Instructions 180
 Appendix 9.1.4 Subject Information Form 182

Index .. 185
Preface

It is a great honor to be associated with subjects at their inception. It is certainly early in the cycle for gait – as it is for biometrics. It is then a great honor to be part of the first ever series on biometrics, as it is to be amongst the first researchers in gait as a biometric. It has been great fun too – a challenge indeed since gait concerns not just recognizing objects, but moving objects at that, so we have had to develop new techniques before we saw the first results that people can indeed be recognized by the way they walk.

In terms of setting the scene, and the context of this book with others in the same series, it has been fascinating to see the rise in prominence of biometrics, from what was originally an academic interest, to one that is on the lips of leading politicians. This is because biometrics has the capability to solve current problems of international concern. These essentially center on verification of identity at speed and with assured performance and biometrics has a unique capability here since we carry our own identity. As can be found elsewhere in the series, the earliest biometrics were palm prints – these suited computational facilities available in the 1970’s. Then, there has been interest in the more popular biometrics: the fingerprint given its long forensic use; the face given that it is non-invasive and can be captured without a subject’s knowledge or interaction; and the iris. Iris recognition has proved quite an inspiration in biometrics, providing some of the largest biometric deployments and with some excellent performance. The fingerprint is now used in products such as mobile phones, computers and access control. Face recognition has a more checkered history, but it is the biometric favored by many in view of its practical advantages. These of course make face recognition more difficult to deploy, as can be found in other volumes in the International Series on Biometrics. Visitors to the US now routinely find their fingerprints and faces recorded at portals of entry. Our context here is to set the scene, not to contrast merit and advantage – that comes later. One of the main reasons for the late entry of gait onto the biometrics stage was not just idea, but also technology. Recognition by gait requires processing sequences of images and this imposes a large computational burden and only the recent advances in speed and memory made gait practicable as a biometric.

Rather than coordinate an edited book, we chose to author this text. We provide a snapshot of all the biometric work in human identification by gait and all major centers for research are indicated in the text. To complete the picture, we have added studies from medicine, psychology and other areas wherein we will find not only justification for the use of gait as a biometric, but also pointers to techniques and to analysis. We have collocated the references at the end of the book, itemized by the area covered and cross referenced to the text. There are of course many other references we could have included since gait is innate to human movement so we have aimed here to provide a set of references which serve as a complete picture of current research in gait for identification, and as pointers to the richer literature to be found in this topic.

As academics, we know well that this book would not have been possible without the contributions of colleagues and students who have conducted research
in this new and fascinating biometric, especially those at the University of Southampton, the CAS Institute of Automation (CASIA) and the University of Maryland. We are very grateful to all whose work appears here. As ever, assembling any book is a difficult task and not eased by current systems. Notwithstanding that, any errors that may have occurred in translating material to this text are our responsibility alone.

Finally, we are grateful to the series editors, Anil Jain and David Zhang for putting the International Series on Biometrics together, and to the staff at Springer who kept us on track. We ourselves have enjoyed working in biometrics and gait very much and we hope that the readers of this text find it not only a useful (and useable!) source of reference, but that it also inspires further interest, development and advances in this fascinating biometric.

Mark S. Nixon
University of Southampton

Tieniu Tan
Institute of Automation, Chinese Academy of Sciences

Rama Chellappa
University of Maryland

X