ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SoCs
Advances in Design and Specification Languages for SoCs

Selected Contributions from FDL’04

Edited by

Pierre Boulet, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, France
Contents

Preface ix

Part I Analog and Mixed-Signal Systems

Introduction 3
Alain Vachoux

1 Refinement of Mixed-Signal Systems: Between HEAVEN and HELL 5
Christoph Grimm, Rüdiger Schroll, Klaus Waldschmidt

2 Mixed Nets, Conversion Models, and VHDL-AMS 21
John Shields and Ernst Christen

3 Monte Carlo Simulation Using VHDL-AMS 41
Ekkehart-Peter Wagner and Joachim Haase

4 Prediction of Conducted-Mode Emission of Complex IC’s 55
Anne-Marie Trullemans-Anckaert, Richard Perdriaux, Mohamed Ramdani and Jean Luc Levant

5 Practical Case Example of Inertial MEMS Modeling with VHDL-AMS 69
Elena Martín, Laura Barrachina, Carles Ferrer

Part II UML-Based System Specification and Design

Introduction 87
Piet van der Putten

6 Metamodels and MDA Transformations for Embedded Systems 89
Lossan Bondé, Cédric Dumoulin and Jean-Luc Dekeyser
vi ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

7 Model Based Testing and Refinement in MDA Based Development
 Ian Oliver

8 Predictability in Real-time System Development
 Jinfeng Huang, Jeroen Voeten, Oana Floreescu, Piet van der Putten and Henk Corporaal

9 Timing Performances and MDA Approaches
 Mathieu Maranzana, Jean-Francois Ponsignon, Jean-Louis Sourrouille, and Franck Bernier

10 UML-Executable Functional Models in ViPERS
 P.F. Lister, V. Trignano, M.C. Bassett and P.L. Watten

Part III C/C++-Based System Design

Introduction
 Eugenio Villar

11 Designing for dynamic partially reconfigurable FPGAs with SystemC and ÅSSS
 Andreas Schallenberg, Frank Oppenheimer and Wolfgang Nebel

12 Heterogeneous System-Level Specification in SystemC
 Fernando Herrera, Pablo Sánchez, Eugenio Villar

13 xHDL: Extending VHDL to Improve Core Parameterization and Reuse
 Miguel A. Sánchez Marcos, Ángel Fernández Herrero, Marisa López-Vallejo

14 SystemC Models for Realistic Simulations Involving Real-Time Operating System Services
 Prih Hastono, Stephan Klaus, and Sorin A. Huss

15 SystemC and OCAPI-xl Based System-Level Design for RSoCs
 Kari Tiensyrjä, Miroslav Cupak, Kostas Masselos, Marko Pettissalo, Konstantinos Potamianos, Yang Qu, Luc Rynders, Geert Vanmeerebeeck, Nikos Voros and Yan Zhang
Contents

Part IV Invited Contributions

Introduction 273
Wolfgang Müller, Christoph Grimm

16
Symbolic Model Checking and Simulation with Temporal Assertions 275
Roland J. Weiss, Jürgen Ruf, Thomas Kropf and Wolfgang Rosenstiel

17
Automotive System Design and AUTOSAR 293
Georg Pelz, Peter Oehler, Eliane Fourgeau, Christoph Grimm
This book is the sixth in the ChDL (Chip Design Languages) series. Year 2004 has seen many efforts in the field of electronic and mixed technology circuit design languages. The industry has recognized the need for system level design as a way to enable the design of the next generation of embedded systems. This is demonstrated by the “ESL Now!” campaign that many companies are promoting. This year has also seen many interesting standardization efforts for system level design, such as SystemC TLM (http://www.systemc.org/) for transactional level modeling with SystemC, AUTOSAR (http://www.autosar.org/) for automotive embedded system applications, or SPIRIT (http://www.spiritconsortium.org/) for IP interchange. In the field of modeling languages, the Model Driven Architecture of the OMG (http://www.omg.org/mda/) has given rise to model driven engineering, which is a more general way of software engineering based on model transformations. As embedded systems are more and more programmable and as the design abstraction level rises, model driven methodologies are also considered for electronic system level design. In this context, the OMG has recently published a call for propositions for a UML 2.0 profile for Modeling and Analysis of Real-Time and Embedded systems (MARTE).

The constraints on the design process of these next generation embedded systems are considerable: Real-time, power consumption, complexity, mixed technology integration, correctness, time to market, cost, . . ., all contribute to the now famous “design gap”. The existing tools are pushed to their limits when designing complex systems-on-chip (SoCs) and reuse has become one of the major ways to fill the gap.

In this very exciting moment in the field of electronic system design languages, the Forum on Specification and Design Languages (FDL’04) has been once again the main European event for this community. This book is a collection of the best papers from FDL’04 selected by the program chairs, Alain Vachoux, Piet van der Putten, Eugenio Villar and Wolfgang Müller.
This book is structured in four parts:

- **Part I, Analog and Mixed-Signal Systems**, presents five chapters covering issues in mixed-signal modeling.

- **Part II, UML-Based System Specification and Design**, is composed of five chapters with emphasis on model transformation approaches to system modeling.

- **Part III, C/C++-Based System Design**, is also structured as five chapters with SystemC as its main topic.

- **Part IV, Invited Contributions**, concludes the book with two invited chapters presenting the important topic of system verification, and the AUTOSAR initiative.

Together, the 17 chapters of this book present recent research advances in design and specification languages for SoCs. I hope that this book will be a thought provoking read to researchers, students and practitioners in the field of languages for electronic system design.

Pierre Boulet
General Chair of FDL’04
Université des Sciences et Technologies de Lille
Lille, France, April 2005

Previous books

