Practical Advances in Petroleum Processing
Volume 1
Practical Advances in Petroleum Processing
Volume 1

Edited by

Chang S. Hsu
ExxonMobil Research and Engineering Company
Baton Rouge, Louisiana, USA

and

Paul R. Robinson
PQ Optimization Services
Katy, Texas, USA

Springer
Tribute to Dr. Esber I. Shaheen
(1937-2003)

Born in 1937 in a remote village in Lebanon, Dr. Esber Ibrahim Shaheen became a much-honored educator, mentor and consultant, both for technology and international affairs. He received his B.S. in chemical engineering from Oklahoma State University, his M.S. in chemical engineering from the University of Arizona in Tuscon, and his Ph.D. from the University of Tennessee in Knoxville.

He was a professor and distinguished lecturer at more than 6 universities, including the University of Wisconsin, the King Fahd University of Petroleum and Minerals in Saudi Arabia, the Illinois Institute of Technology, Chicago, and the University of Tennessee. He also served as Director of Educational Services for the Institute of Gas Technology and Director of International
Education Programs for the Gas Developments Corporation in Chicago, Illinois. He assisted and encouraged students from all over the world and was instrumental in helping many of them in developing careers throughout the world.

Dr. Shaheen authored 7 textbooks, 3 of which were on international relations and more than 50 technical articles. He was the author, co-author or editor of nearly 20 training manuals on engineering, energy, the environment and petrochemical processing.

He received many awards, including Outstanding Educator of America. Most significantly, Dr. Shaheen received medals from President Ronald Reagan and from the Governor of the Eastern Province in Saudi Arabia.

We are pleased to include, with the permission of Dr. Esber I. Shaheen’s wife, Shirley K. Shaheen, selections from his writings in this volume.

Paul R. Robinson
Chang Samuel Hsu
Petroleum has remained an important aspect of our lives and will do so for the next four or five decades. The fuels that are derived from petroleum supply more than half of the world’s total supply of energy. Gasoline, kerosene, and diesel oil provide fuel for automobiles, tractors, trucks, aircraft, and ships. Fuel oil and natural gas are used to heat homes and commercial buildings, as well as to generate electricity. Petroleum products are the basic materials used for the manufacture of synthetic fibers for clothing and in plastics, paints, fertilizers, insecticides, soaps, and synthetic rubber. The uses of petroleum as a source of raw material in manufacturing are central to the functioning of modern industry.

Petroleum refining is now in a significant transition period as the industry has moved into the 21st century and the demand for petroleum products has shown a sharp growth in recent years, especially with the recent entry of China into the automobile market. This means that the demand for transportation fuels will, without doubt, show a steady growth in the next decade, contributing to petroleum product demand patterns that can only be fulfilled by the inclusion of heavier feedstocks into refinery operations.

In fact, the increasing supply of heavy crude oils as refinery feedstocks is a serious matter and it is essential that refineries are able to accommodate these heavy feedstocks. Indeed, in order to satisfy the changing pattern of product demand, significant investments in refining conversion processes will be necessary to profitably utilize these heavy crude oils. The most efficient and economical solution to this problem will depend to a large extent on individual country and company situations. However, the most promising technologies will likely involve the conversion of heavy crude oil, vacuum bottom residua, asphalt from deasphalting processes, and bitumen from tar sand deposits. Therefore, a thorough understanding of the benefits and limitations of petroleum processing is necessary and is introduced within the pages of this book.

The book is divided into two volumes. The first volume contains covers the origin and characterization of petroleum, major processes for fuel-
production, and environmental pollution control. The second volume focuses on lubricants, hydrogen production, process modeling, automation, and online optimization.

The 50 contributors hail from three continents – Asia, Europe, and North America. This allows the book to contain within its pages a variety of experiences that are truly worldwide in breadth and scope. Contributions come from several sources, including integrated oil companies, catalyst suppliers, licensors, consultants, and academic researchers.

I am pleased to have been asked to write the Forward to this book. In light of the world energy situation, it is a necessary and timely addition to the literature that covers the technology of petroleum.

Dr. James G. Speight
Contributors

Brent E. Beasley ExxonMobil Research & Engineering Co.
Process Research Lab
Baton Rouge, LA 70821

F. Emmett Bingham Haldor Topsoe, Inc.
770 The City Drive, Suite 8400
Orange, CA 92668

Yevgenia Briker National Centre for Upgrading Technology
1 Oil Patch Drive, Suite A202
Devon, Alberta T9G 1A8, Canada

James D. Burrington The Lubrizol Corporation
29400 Lakeland Blvd
Wickliffe, OH 44092

Ki-Hyouk Choi Kyushu University
Kasuga, Fukuoka 816-8580, Japan

Dennis Cima Aspen Technology, Inc.
2500 City West Boulevard, Suite 1500
Houston, Texas 77042

I. A. Cody ExxonMobil Research & Engineering Co.
Process Research Lab
Baton Rouge, LA 70821

Barry H. Cooper Haldor Topsoe A/S
Nymollevej 55, DK2800
Lyngby, Denmark

M. Andrew Crews CB&I Process and Technology
3102 E. Fifth St
Tyler, TX 75701-5013

Geoffrey E. Dolbear G.E. Dolbear & Associates
23050 Aspen Knoll Drive
Diamond Bar, California 91765, USA

T. Rig Forbus The Valvoline Co. of Ashland, Inc.
Lexington, KY 40512 USA

Thomas Gentzis CDX Canada Co
1210, 606-4th Street SW,
Calgary, Alberta, Canada T2P 1T1
<table>
<thead>
<tr>
<th>Name</th>
<th>Company/Institution</th>
<th>Address/Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Douglas E. Nelson</td>
<td>Haldor Topsøe, Inc.</td>
<td>770 The City Drive, Suite 8400</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Orange, CA 92668</td>
</tr>
<tr>
<td>Paul O’Connor</td>
<td>Albemarle Nobel Catalysts</td>
<td>Stationsplein 4, P.O.Box 247, 3800AE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amersfoort, The Netherlands</td>
</tr>
<tr>
<td>Clifford C. Pedersen</td>
<td>Suncor Inc.</td>
<td>1900 River Road</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sarnia, Ontario N7T 7J3 Canada</td>
</tr>
<tr>
<td>J. L. Peña-Diez</td>
<td>Technology Centre, Repsol-YPF</td>
<td>P.O. Box 300</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28930 Móstoles – Madrid, Spain</td>
</tr>
<tr>
<td>John K. Pudelski</td>
<td>The Lubrizol Corporation</td>
<td>29400 Lakeland Blvd</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wickliffe, OH 44092</td>
</tr>
<tr>
<td>Parviz M. Rahimi</td>
<td>National Centre for Upgrading Technology</td>
<td>1 Oil Patch Drive, Suite A202</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Devon, Alberta, Canada T9G 1A8</td>
</tr>
<tr>
<td>Zbigniew Ring</td>
<td>National Centre for Upgrading Technology</td>
<td>1 Oil Patch Drive, Suite A202</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Devon, Alberta T9G 1A8, Canada</td>
</tr>
<tr>
<td>Paul R. Robinson</td>
<td>PQ Optimization Services</td>
<td>3418 Clearwater park Drive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Katy, Texas 77450, USA</td>
</tr>
<tr>
<td>James P. Roski</td>
<td>The Lubrizol Corporation</td>
<td>29400 Lakeland Blvd</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wickliffe, OH 44092 USA</td>
</tr>
<tr>
<td>Stilianos G. Roussis</td>
<td>Sarnia Research Centre, Imperial Oil</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sarnia, Ontario, N7T 8C8 Canada</td>
</tr>
<tr>
<td>B. Gregory Shumake</td>
<td>CB&I Process and Technology</td>
<td>3102 E. Fifth St</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tyler, TX 75701-5013 USA</td>
</tr>
<tr>
<td>Eli I. Shaheen</td>
<td>International Institute of Technology, Inc.</td>
<td>830 Wall Street</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Joplin, MO 64801 USA</td>
</tr>
<tr>
<td>Ebbe R. Skov</td>
<td>Hetagon Energy Systems Inc.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mission Viejo, California, USA</td>
</tr>
<tr>
<td>Chunshan Song</td>
<td>Dept. of Energy & Geo-Environmental Engineering</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>The Pennsylvania State University</td>
</tr>
<tr>
<td></td>
<td></td>
<td>University Park, Pennsylvania 16802, USA</td>
</tr>
<tr>
<td>Dennis Vauk</td>
<td>Air Liquide America L.P.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Houston, Texas</td>
</tr>
<tr>
<td>Name</td>
<td>Institution</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Clifford C. Walters</td>
<td>ExxonMobil Research & Engineering Co. Annandale, NJ 08801, USA</td>
<td></td>
</tr>
<tr>
<td>Murray R. Watt</td>
<td>Sarnia Research Centre, Imperial Oil Sarnia, Ontario, N7T 8C8 Canada</td>
<td></td>
</tr>
<tr>
<td>Xieqing Wang</td>
<td>Research Institute of Petroleum Processing SINOPEC Beijing, China</td>
<td></td>
</tr>
<tr>
<td>Margaret M. Wu</td>
<td>ExxonMobil Research & Engineering Co. Annandale, NJ 08801, USA</td>
<td></td>
</tr>
<tr>
<td>Chaogang Xie</td>
<td>Research Institute of Petroleum Processing SINOPEC Beijing, China</td>
<td></td>
</tr>
<tr>
<td>Hong Yang</td>
<td>National Centre for Upgrading Technology 1 Oil Patch Drive, Suite A202 Devon, Alberta T9G 1A8, Canada</td>
<td></td>
</tr>
<tr>
<td>Genquan Zhu</td>
<td>Research Institute of Petroleum Processing SINOPEC Beijing, China</td>
<td></td>
</tr>
</tbody>
</table>
Preface

In 1964, Bob Dylan released an album and song named, *The Times They Are A-Changin’*. He was right. Times were changing, but nobody, not even Dylan, could have foreseen just how dramatically the great, wide world – and the smaller world of petroleum processing – would change during the next forty years.

In 1964, a wall divided Berlin. The moon was free of foot-prints. And in America we said, “Fill ‘er up with ethyl” as a team of fueling-station attendants hurried to wash the windows of our thirsty Fords and Chevies.

In 1970, the Nixon administration created the U.S. Environmental Protection Agency (EPA), which, in 1973, initiated a lead phase-down program for gasoline. By the end of the decade, thanks to an oil embargo in 1973-74 and a revolution in Iran in 1978-79, fuel-efficient Japanese cars were displacing home-made brands in the United States and Europe.

In the 1980s, refiners built new process units to close the “octane gap” created by ever-tighter limits on lead in gasoline. Due to record-high prices, the worldwide demand for petroleum actually was decreasing. The drive to conserve energy created a market for rigorous models and advanced process control in refineries and petrochemical plants.

The Clean Air Act Amendments (CAAA) of 1990 again changed the industry. For gasoline, the CAAA required the addition of oxygenates such as MTBE. Billions of dollars, francs, marks, and yen were spent building methanol and MTBE plants. For on-road diesel, the CAAA emulated California by limiting sulfur content to 500 wppm. Across the Atlantic, the European Commission imposed a different set of limits. By the end of 2003, refiners were making low-sulfur gasoline and preparing to make ultra-low-sulfur diesel. Ironically, in 1999, Governor Gray Davis issued an executive order banning the use of MTBE in California gasoline. Soon thereafter, Davis was replaced by Arnold Schwarzenegger.

Purpose of this Book. This historical digression illustrates, we hope, that petroleum processing is a dynamic industry driven by global political, economic, and environmental forces. That’s one of the reasons we’re writing this book: to explain how the industry has changed during the past 40 years,
particularly since 1994. We also wanted to cover cutting-edge topics usually missing from other general books on refining – FCC gasoline post-treatment, catalytic production of lubes, optimization of hydrogen and utility networks, process modeling, model-predictive control, and online optimization. And in addition: pollution control, staffing, reliability and safety.

Target Audience. Our target audience includes engineers, scientists and students who want an update on petroleum processing. Non-technical readers, with help from our extensive glossary, will benefit from reading Chapter 1 and the overview chapters that precede each major section.

Contributors. We are pleased to have contributions from several sources, including integrated oil companies, catalyst suppliers, licensors, consultants, and academic researchers. Our 50 contributors hail from three continents – Asia, Europe, and North America.

Many of the chapters are based on presentations given at a symposium at the 222nd National Meeting of the American Chemical Society (ACS), which was held in Chicago, Illinois in 2001. The symposium was entitled, “Kinetics and Mechanisms of Petroleum Processes.” We thank ACS and the Division of Petroleum Chemistry, Inc. for allowing us to co-chair that session.

Organization and Overview. The book is divided into two volumes. The first contains 14 chapters, which cover the origin and characterization of petroleum, major processes for fuel-production, and environmental pollution control. The second volume contains 13 chapters, which focus on lubricants, hydrogen production, process modeling, automation, and refining management.

Chapter 1 introduces the book by giving an overview of petroleum and petroleum processing. Chapters 2-4 focus on the origin and characterization of oil and gas. Chapter 5 reports recent advances in the production of light olefin feedstocks for petrochemicals by catalytic processes, especially the balance between propylene and ethylene. Chapter 6 gives an overview of the kinetics and mechanism of fluidized catalytic cracking, an important process for producing gasoline.

The next five chapters discuss hydroprocessing and alternative ways to remove sulfur from fuels. Chapter 7 gives an overview of hydrotreating and hydrocracking and Chapter 8 gives more detail on hydrocracking. Chapters 9-11 discuss aspects of hydrotreating catalysts and processes, especially those related to meeting clean fuel specifications. Chapter 12 describes an extractive desulfurization process, and Chapter 13 discusses improvements in reactor design for hydroprocessing units.

One of the most important elements in modern petroleum refining is to keep the environment clean. Chapter 14 covers a wide range of pollution
control issues: regulations, types of pollutants, informative examples of major environmental incidents, and pollution control technology.

The first four chapters in Volume 2 describe processes for making lubricating oils, including synthetic lubes. Chapter 15 gives an overview of conventional manufacturing processes for lube base-stocks, Chapter 16 discusses selective hydroprocessing for making high quality lubricants to meet new standards, Chapter 17 discusses synthetic lube base stocks, and Chapter 18 describes additives and formulation technology for engine oils.

As the world’s supplies of light crude oils dwindle, processes for refining heavy oils and bitumen are becoming increasingly important. Chapter 19 deals with heavy oil processing. It reviews the chemical composition, physical and chemical properties, and upgrading chemistry of bitumen and heavy oils.

During the past twenty years, competitive pressures, including industry consolidation, forced the closure of some refineries even as others expanded. More and more, surviving refiners are using automation – model-predictive control, composition-based modeling, and computerized analysis of analytical data – to gain or maintain a competitive edge. Chapter 20 describes the application of kinetic modeling tools based on molecular composition to the development of a mechanistic kinetic model for the catalytic hydrocracking of heavy paraffins. Chapter 21 provides a general survey of process models based on two types of kinetic lumping: partition-based lumping and total lumping. Chapter 22 describes how model-predictive control can increase throughput, product quality, and stability in refining operations. Chapter 23 describes the real-time, online refinery-wide optimization application at Suncor-Sarnia.

As refiners reconfigure their plants to produce clean fuels, they are looking at ways to optimize the value of the hydrogen they now produce. They are also looking at different ways to supply the extra hydrogen required to make clean fuels. Chapter 24 discusses the online application of models of hydrogen production from the steam reforming of naphtha and other hydrocarbons. Chapter 25 addresses the issues of hydrogen demand, production and supply in refineries, and Chapter 26 tells refiners why they should think of their hydrogen as an asset, not a liability.

Chapter 27 reviews a new methodology to generate complete and reliable crude oil assays from limited laboratory data. Better crude quality control can improve refinery planning to ensure the profitability to survive in highly competitive global markets. It has also potential to be used in upstream operations for preliminary assessment of the oil quality of new reservoirs and new wells.

Putting this book together has been a rewarding challenge. We hope that you, our readers, will find it useful.
Acknowledgements. We wish to thank Dr. Kenneth Howell, Senior Editor for Chemistry at Springer, for his guidance and limitless patience. We also want to thank our many contributors for their time and effort. Obviously, without them, this book would not exist.

Most of all, we wish to thank our devoted, magnificent wives, Grace Miao-Miao Chen and Carrie, for putting up with our absences – mental if not physical – during so many nights and lost weekends throughout the past two years.
3.4.4 Hydrocracking .. 33
3.4.5 Hydrocracking Objectives .. 33
3.4.6 Hydrocracker Feeds .. 33
3.4.7 Hydrocracking Process Flow 33
3.4.8 Hydrocracker Products ... 34
3.5 Ebullated Bed Units .. 34
4. Upgrading Naphtha .. 35
4.1 Catalytic Reforming ... 35
4.1.1 Catalytic Reforming Objective 35
4.1.2 Chemistry of Catalytic Reforming 35
4.1.3 Catalytic Reforming Catalysts 37
4.1.4 Process Flows ... 37
4.2 Isomerization .. 40
4.2.1 Isomerization Objectives .. 40
4.2.2 Isomerization Catalysts .. 41
4.2.3 Process Flow: C₄ Isomerization 41
4.2.4 Process Flow: C₅CRC₆ Isomerization 41
4.3 Catalytic Oligomerization .. 43
4.3.1 Catalytic Oligomerization Objectives 43
4.3.2 Catalysis ... 43
4.3.3 Process Flow ... 43
4.4 Alkylation ... 44
4.4.1 Alkylation Objectives .. 44
4.4.2 Process Flow: Sulfuric Acid Alkylation 44
4.4.3 Process Flow: HF Alkylation 45
5. Lubes, Waxes and Greases .. 46
5.1 Lube Base Stocks ... 46
5.1.1 Catalytic Dewaxing .. 46
5.2 Waxes .. 46
5.3 Greases .. 47
6. Asphalt Production .. 47
7. Drying, Sweetening, and Treating ... 48
7.1 Drying and Sweetening .. 48
7.2 Treating .. 48
8. Product Blending ... 49
8.1 Product Specifications ... 49
8.2 Gasoline Blending .. 50
8.2.1 Octane Numbers for Hydrocarbons 50
8.2.2 Reformulated Gasoline (RFG) 51
8.2.3 Gasoline Additives .. 53
8.2.4 Low-Sulfur Gasoline and Ultra-Low-Sulfur Diesel 54
8.2.5 FCC Gasoline Post-Treating 55
8.3 Kerosene and Jet Fuel ... 55
<table>
<thead>
<tr>
<th>Section</th>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.4</td>
<td>Diesel Blending</td>
<td>56</td>
</tr>
<tr>
<td>8.4.1</td>
<td>Diesel Additives</td>
<td>58</td>
</tr>
<tr>
<td>9.</td>
<td>Protecting the Environment</td>
<td>59</td>
</tr>
<tr>
<td>9.1</td>
<td>Air Quality</td>
<td>59</td>
</tr>
<tr>
<td>9.1.1</td>
<td>Sulfur Recovery</td>
<td>59</td>
</tr>
<tr>
<td>9.2</td>
<td>Waste Water Treatment</td>
<td>62</td>
</tr>
<tr>
<td>9.2.1</td>
<td>Primary Treatment</td>
<td>62</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Secondary Treatment</td>
<td>63</td>
</tr>
<tr>
<td>9.2.3</td>
<td>Tertiary Treatment</td>
<td>63</td>
</tr>
<tr>
<td>9.3</td>
<td>Solid Waste</td>
<td>63</td>
</tr>
<tr>
<td>10.</td>
<td>Power, Steam, Hydrogen, and CO₂</td>
<td>63</td>
</tr>
<tr>
<td>10.1</td>
<td>Power</td>
<td>64</td>
</tr>
<tr>
<td>10.2</td>
<td>Steam</td>
<td>64</td>
</tr>
<tr>
<td>10.3</td>
<td>Hydrogen and CO₂</td>
<td>64</td>
</tr>
<tr>
<td>11.</td>
<td>Refining Economics</td>
<td>65</td>
</tr>
<tr>
<td>11.1</td>
<td>Costs</td>
<td>65</td>
</tr>
<tr>
<td>11.2</td>
<td>Revenues</td>
<td>67</td>
</tr>
<tr>
<td>11.3</td>
<td>Margins</td>
<td>68</td>
</tr>
<tr>
<td>11.3.1</td>
<td>Location, Location, Location</td>
<td>68</td>
</tr>
<tr>
<td>11.3.2</td>
<td>Size</td>
<td>69</td>
</tr>
<tr>
<td>11.3.3</td>
<td>Conversion Capability and Complexity</td>
<td>69</td>
</tr>
<tr>
<td>11.3.4</td>
<td>Automation</td>
<td>70</td>
</tr>
<tr>
<td>12.</td>
<td>Safety, Reliability, and Maintenance</td>
<td>70</td>
</tr>
<tr>
<td>12.1</td>
<td>Refinery Staffing</td>
<td>70</td>
</tr>
<tr>
<td>12.2</td>
<td>Safety</td>
<td>71</td>
</tr>
<tr>
<td>12.3</td>
<td>Reliability and Maintenance</td>
<td>72</td>
</tr>
<tr>
<td>13.</td>
<td>Petroleum Processing Trends</td>
<td>73</td>
</tr>
<tr>
<td>13.1</td>
<td>Industry Consolidation</td>
<td>73</td>
</tr>
<tr>
<td>13.2</td>
<td>Environmental Regulations</td>
<td>74</td>
</tr>
<tr>
<td>13.3</td>
<td>Residue Upgrading</td>
<td>75</td>
</tr>
<tr>
<td>13.4</td>
<td>Increased Oil Consumption in Developing Countries</td>
<td>75</td>
</tr>
<tr>
<td>13.5</td>
<td>Automation</td>
<td>76</td>
</tr>
<tr>
<td>14.</td>
<td>Summary</td>
<td>76</td>
</tr>
<tr>
<td>15.</td>
<td>References</td>
<td>76</td>
</tr>
</tbody>
</table>

2. The Origin of Petroleum

Clifford C. Walters

1. Historical Overview ... 79
2. The Petroleum System .. 81
4. Kerogen Formation and the Generative Potential of Source Rocks... 86
3. Crude Assay

Murray R. Watt and Stilianos G. Roussis

1. Introduction ... 103
2. Property Measurements/Crude Inspections 104
 2.1 API Gravity .. 104
 2.2 Sulfur Content ... 104
 2.3 Pour Point .. 104
 2.4 Whole Crude Simulated Distillation 104
 2.5 Full Assay ... 105
 2.6 Physical Distillation – ASTM D 2892 Method 105
 2.7 ASTM D5236 Method ... 106
 2.8 TBP Curves .. 106
 2.9 Property Measurement/Assay Grid 106
 2.10 Physical Property Test ... 107
 2.10.1 API Gravity .. 107
 2.10.2 Aniline Point .. 107
 2.10.3 Cloud Point .. 107
 2.10.4 Freeze Point .. 108
 2.10.5 Metals .. 108
 2.10.6 Mercaptan Sulfur .. 108
 2.10.7 Micro Carbon Residue 108
 2.10.8 Nitrogen .. 108
 2.10.9 Pour Point ... 109
 2.10.10 Refractive Index .. 109
 2.10.11 Reid Vapor Pressure RVP 109
 2.10.12 Salt Content .. 109
 2.10.13 Smoke Point ... 109
 2.10.14 Sulfur Content .. 110
 2.10.15 Total Acid Number ... 110
 2.10.16 Viscosity .. 110
 2.10.17 Water & Sediment ... 110
 2.11 Asphalt Properties ... 111
 2.11.1 Penetration ... 111
 2.11.2 Softening Point .. 111
3. The Prediction of Crude Assay Properties 111
 3.1 Needs for Rapid and Accurate Prediction of Crude Assay Properties 111
Contents

3.2 Predictions from Measurement of Selected Whole Crude Oil Properties .. 112
3.3 Predictions from NMR Measurements 112
3.4 Predictions from Chromatographic Data 113
3.5 Predictions from GC/MS Measurements 113
3.6 Predictions from NIR Data ... 114
3.7 Property Determination from First Principles 115

4. References .. 115

4. Integrated Methodology for Characterization of Petroleum Samples and Its Application for Refinery Product Quality Modeling

Yevgenia Briker, Zbigniew Ring, and Hong Yang

1. Introduction .. 117
2. Class-Type Separation .. 118
 2.1 Modification of ASTM D2007 LC Separation 119
 2.2 SPE Method .. 121
 2.2.1 SAP (Saturates, Aromatics and Polars) 121
 2.2.2 SOAP (Saturates, Olefins, Aromatics, Polars) 123
3. Detailed Hydrocarbon Type Analysis 131
 3.1 Mass Spectrometry .. 131
 3.2 Distributions by Boiling Point 137
4. Neural Network Correlations ... 142
5. Acknowledgments ... 147
6. References .. 147

5. Catalytic Processes for Light Olefin Production

Wang Xieqing, Xie Chaogang, Li Zaiting, and Zhu Gengquan

1. Introduction .. 149
2. Fundamentals of the Cracking Mechanism for Light Olefin Production ... 151
3. Catalysts .. 153
4. New Technology ... 155
 4.1 Deep Catalytic Cracking (DCC) 156
 4.2 Catalytic Pyrolysis Process (CPP) 157
 4.3 PetroFCC .. 160
 4.4 Propylur ... 161
 4.5 Superflex .. 162
 4.6 Mobil Olefin Interconversion (MOI) 163
 4.7 Propylene Catalytic Cracking (PCC) 164
 4.8 Olefins Conversion Technology (OCT) 164
 4.9 Methanol to Olefin (MTO) Process 166
5. Prospects ... 167
6. References .. 168
6. Kinetics and Mechanisms of Fluid Catalytic Cracking

P. O’Connor

1. Introduction ... 169
2. Process Development ... 169
3. Chemistry and Kinetics .. 171
4. Catalysts ... 171
5. Catalyst Aging and Deactivation ... 173
6. Feedstocks, Products and the Environment 174
7. Future Challenges .. 175
8. References .. 175

7. Hydrotreating and Hydrocracking: Fundamentals

Paul R. Robinson and Geoffrey E. Dolbear

1. Introduction ... 177
 1.1 Hydroprocessing Units: Similarities and Differences 178
2. Process Objectives ... 180
 2.1 Clean Fuels .. 181
 2.2 The Process In-Between ... 181
3. Chemistry of Hydroprocessing .. 182
 3.1 Saturation Reactions .. 182
 3.2 HDS Reactions .. 185
 3.3 HDN Reactions ... 186
 3.4 Cracking Reactions .. 187
 3.5 Coke Formation .. 189
 3.6 Mercaptan Formation .. 190
 3.7 Reaction Kinetics .. 192
4. Hydroprocessing Catalysts ... 195
 4.1 Catalyst Preparation ... 196
 4.1.1 Precipitation ... 196
 4.1.2 Filtration, Washing and Drying 198
 4.1.3 Forming ... 198
 4.1.4 Impregnation .. 198
 4.1.5 Activation ... 199
 4.1.6 Noble-Metal Catalysts ... 199
 4.2 Hydrotreating Catalysts ... 199
 4.3 Hydrocracking Catalysts .. 200
 4.4 Catalyst Cycle Life ... 200
 4.4.1 Catalyst Regeneration and Rejuvenation 202
 4.4.2 Catalyst Reclamation ... 203
5. Process Flow .. 204
 5.1 Trickle-Bed Units .. 204
 5.2 Slurry-Phase Hydrocracking .. 210
 5.3 Ebullating Bed Units ... 210
6. Process Conditions ... 211
7. Yields and Product Properties ... 212
8. Overview of Economics ... 212
 8.1 Costs ... 212
 8.2 Benefits .. 214
 8.3 Catalyst Cycle Life ... 214
9. Hydrocracker-FCC Comparison .. 215
10. Operational Issues ... 215
11. Licensors ... 216
12. Conclusion .. 217
13. References .. 217

8. Recent Advances in Hydrocracking
 Adrian Gruia
 1. Introduction ... 219
 2. History ... 219
 3. Flow Schemes ... 221
 3.1 Single Stage Once-Through Hydrocracking 221
 3.2 Single Stage with Recycle Hydrocracking 222
 3.3 Two Stage Recycle Hydrocracking 224
 3.4 Separate Hydrotreat Two Stage Hydrocracking 224
 4. Chemistry .. 225
 4.1 Treating Reactions .. 225
 4.2 Cracking Reactions ... 227
 5. Catalysts .. 231
 5.1 Acid Function of the Catalyst 232
 5.2 Metal Function of the Catalyst 234
 6. Catalyst Manufacturing .. 234
 6.1 Precipitation .. 235
 6.2 Forming ... 235
 6.3 Drying and Calcining ... 238
 6.4 Impregnation .. 238
 7. Catalyst Loading and Activation 239
 7.1 Catalyst Loading .. 239
 7.2 Catalyst Activation ... 240
 8. Catalyst Deactivation and Regeneration 241
 8.1 Coke Deposition .. 241
 8.2 Reversible Poisoning .. 242
 8.3 Agglomeration of the Hydrogenation Component 242
 8.4 Metals Deposition ... 242
 8.5 Catalyst Support Sintering 242
 8.6 Catalyst Regeneration ... 243
14. Catalytic Active Sites for HDS and Hydrogenation 288
15. Roles of Steric Hindrance in Adsorption and Kinetic Processes of HDS ... 291
16. Further Scope and Acknowledgements 293
17. References .. 294

Barry H. Cooper and Kim G. Knudsen
1. Changes in Diesel Specifications and Demand 297
2. Challenges Facing the Refiner .. 298
3. The Selection of Catalyst for Ultra Deep Desulfurization 299
 3.1 Desulfurization .. 299
 3.2 Choice of Catalysts for Ultra Deep Desulfurization 301
 3.3 Inhibitors for the Hydrogenation Route 303
 3.4 Consequences for the Choice of Catalyst in Ultra Deep Desulfurization ... 309
4. Case Studies for the Production of Ultra Low Sulfur Diesel ... 309
 4.1 Case 1: Straight-run, Low Sulfur Feed at 32 Bar 310
 4.2 Case 2: Straight-run, High Sulfur Feed at 32 Bar 311
 4.3 Case 3: Blended, High Sulfur Feed at 32 Bar 312
 4.4 Case 4: Blended, High Sulfur Feed at 54 Bar 314
 4.5 Revamp vs. Grassroots Unit ... 315
5. Conclusion ... 316
6. References .. 316

11. Ultra-Clean Diesel Fuels by Deep Desulfurization and Deep Dearomatization of Middle Distillates
Chunshan Song and Xiaoliang Ma
1. Introduction ... 317
2. Sulfur Compounds in Transportation Fuels 321
3. Challenges of Ultra Deep Desulfurization of Diesel Fuels 324
 3.1 Reactivities of Sulfur Compounds in HDS 324
 3.2 Mechanistic Pathways of HDS 328
4. Design Approaches to Ultra Deep Desulfurization 330
 4.1 Improving Catalytic Activity by New Catalyst Formulation ... 332
 4.2 Tailoring Reaction and Processing Conditions 336
 4.3 Designing New Reactor Configurations 338
 4.4 Developing New Processes .. 340
 4.4.1 S Zorb Process for Sulfur Absorption and Capture 340
 4.4.2 Selective Adsorption for Deep Desulfurization at Ambient Temperature .. 341
4.4.3 New Integrated Process Concept Based on Selective Adsorption .. 344
4.4.4 Adsorption Desulfurization Using Alumina Based Adsorbents ... 345
4.4.5 Charge Complex Formation ... 345
4.4.6 Oxidative Desulfurization ... 346
4.4.7 Biodesulfurization ... 348
5. FCC Feed Hydrotreating and LCO Undercutting .. 352
 5.1 FCC Feed Hydrotreating and Sulfur Reduction in LCO 352
 5.2 Undercutting LCO ... 353
6. Deep Hydrogenation of Diesel Fuels .. 355
 6.1 Benefits of Aromatics Reduction ... 355
 6.2 Challenges of Deep Aromatization ... 356
 6.3 Application of Noble Metal Catalysts .. 356
7. Design Approaches to Deep Hydrogenation .. 358
 7.1 Deep Hydrogenation at Low Temperatures ... 358
 7.2 Saturation of Aromatics in Commercial Process .. 360
8. Summary and Conclusions .. 361
9. Acknowledgment .. 362
10. Glossary of Terms ... 362
11. References .. 363

12. Synergistic Extractive Desulfurization Processes

 Ebbe R. Skov and Geoffrey E. Dolbear
 1. Introduction ... 373
 2. Extractive Desulfurization Processes .. 375
 3. Synergism Between HDS and EDS ... 376
 4. Summary .. 378
 5. References .. 379

13. Advanced Reactor Internals for Hydroprocessing Units

 F. Emmett Bingham and Douglas E. Nelson
 1. Introduction .. 381
 2. Elements of Hydroprocessing Reactor Design .. 382
 3. Liquid Distribution Tray Design ... 383
 4. Quench Mixing Chamber Design ... 388
 5. Example of Reactor Internals Revamp ... 389
 5.1 Reactor Internals Performance (Pre-revamp) .. 390
 5.2 New Reactor Internals Modifications and Improvements 391
 5.3 Performance Improvement Results ... 392
 5.4 Radial Temperature Differences .. 392
 5.5 Weighted Average Bed Temperature ... 393
 6. Conclusions ... 393
14. Environmental Pollution Control

Paul R. Robinson, Eli I. Shaheen, and Esber I. Shaheen

1. Why Control Pollution? .. 395
2. Pollution from Petroleum Processing 395
 2.1 Particulate Matter .. 395
 2.2 Carbon Monoxide ... 396
 2.3 Sulfur Oxides ... 396
 2.4 Nitrogen Oxides, VOC, and Ozone 397
 2.5 Chemicals that React with Stratospheric Ozone 397
 2.6 Greenhouse Gases .. 399
 2.6.1 Global CO₂ and Temperature Balances................... 399
 2.6.2 Global Warming ... 400
 2.7 Waste Water ... 400
 2.8 Solid Waste .. 401
 2.9 Oil Spills .. 401
3. Environmental Incidents ... 401
 3.1 London Fog (1952) ... 402
 3.2 Amoco Cadiz (1978) ... 402
 3.3 Bhopal, India (1984) ... 403
 3.4 Chernobyl (1986) ... 404
 3.5 The Rhine (1986) .. 406
 3.7 Kuwait (1991) ... 408
 3.8 Lessons Learned ... 409
4. Environmental Agencies ... 411
 4.1 Environmental Protection Agency 411
 4.2 Other Environmental Agencies 412
 4.3 Occupational Safety and Health Administration 412
 4.3.1 Material Safety Data Sheets (MSDS) 413
5. Key Regulations ... 414
 5.1 Clean Air Acts ... 415
 5.1.1 Title I – Non-Attainment .. 416
 5.1.2 Title II – Mobile Sources 417
 5.1.3 Title III – Air Toxics ... 419
 5.1.4 Title IV – Acid Rain .. 420
 5.1.5 Title VIII – Enforcement 420
 5.2 River and Harbors Act, Refuse Act 421
 5.3 Federal Water Pollution Control Act 421
 5.4 Clean Water Acts, Water Quality Act 422
 5.5 Marine Protection, Research, and Sanctuaries Act 423
Practical Advances in Petroleum Processing
Volume 2
Practical Advances in Petroleum Processing
Volume 2

Edited by

Chang S. Hsu
ExxonMobil Research and Engineering Company
Baton Rouge, Louisiana, USA

and

Paul R. Robinson
PQ Optimization Services
Katy, Texas, USA

Springer
CONTENTS

15. Conventional Lube Basestock Manufacturing
 B. E. Beasley
 1. Lube Basestock Manufacturing ... 1
 2. Key Base Stock Properties ... 3
 2.1 Lube Oil Feedstocks ... 4
 3. Base Stock Composition ... 5
 4. Typical Conventional Solvent Lube Processes 5
 4.1 Lube Vacuum Distillation Unit (VDU) or Vacuum
 Pipestill (VPS) - Viscosity and Volatility Control 6
 4.2 Solvent Extraction - Viscosity Index Control 6
 4.3 Solvent Dewaxing - Pour Point Control 6
 4.4 Hydrofinishing - Stabilization ... 6
 4.5 Solvent Deasphalting ... 7
 4.6 Refined Wax Production .. 7
 5. Key Points in Typical Conventional Solvent Lube Plants 8
 6. Base Stock End Uses ... 8
 7. Lube Business Outlook .. 9
 8. Feedstock Selection ... 9
 8.1 Lube Crude Selection ... 9
 9. Lube Crude Assays ... 11
 10. Vacuum Distillation ... 12
 10.1 Feed Preheat Exchangers .. 15
 10.2 Pipestill Furnace ... 15
 10.3 Tower Flash Zone .. 15
 10.4 Tower Wash Section ... 15
 10.5 Wash Oil ... 16
 10.6 Purpose of Pumparounds .. 16
 10.7 Tower Fractionation ... 16
 10.8 Fractionation Packing ... 16
 10.9 Bottoms Stripping Section .. 18
 10.10 Side Stream Strippers ... 18
 10.11 Overhead Pressure .. 18
Contents

10.14 Factors Affecting Lube Distillate Feed .. 20
11. Pipestill Troubleshooting .. 20
 11.1 Material Balance and Viscosity Measurements 20
 11.2 Tower Pressure Survey .. 21
12. Solvent Extraction .. 22
 12.1 The Characteristics of a Good Extraction Solvent 24
 12.2 Extraction Process .. 25
 12.3 Extraction Process Variables .. 28
 12.4 Solvent Contaminants .. 28
 12.5 Solvent Recovery .. 28
 12.5.1 Raffinate Recovery .. 29
 12.5.2 Extract Recovery .. 29
 12.6 Minimizing Solvent Losses .. 29
 12.6.1 Recovery Section ... 29
 12.6.2 Other Contributors to Solvent Losses 29
13. Corrosion in NMP Plants .. 30
14. Extraction Analytical Tests ... 30
15. Dewaxing .. 31
16. The Role of Solvent in Dewaxing .. 32
17. Ketone Dewaxing Processes .. 34
 17.1 Incremental Ketone Dewaxing Plant .. 34
 17.2 DILCHILL Dewaxing ... 35
 17.3 Dewaxing Process Variables .. 37
18. Process Variable Effects .. 37
 18.1 Crude Source Affects Dewaxed Oil Yield .. 37
19. Solvent Composition .. 38
 19.1 Miscible and Immiscible Operations .. 38
 19.2 Effect of Viscosity on Filtration Rate .. 40
 19.3 Effect of Chilling Rate on Filtration Rate and Dewaxed Oil Yield 40
 19.4 Effect of Temperature Profile .. 41
 19.5 Effect of Solvent Dilution Ratio .. 41
 19.5.1 Filtration Rate .. 41
 19.5.2 DWO Yield ... 42
 19.6 Effect of Water .. 42
 19.7 Effect of Increased Raffinate VI ... 43
 19.8 Effect of Pour Point Giveaway on Product Quality and Dewaxed Oil Yield 43
20. Scraped Surface Equipment .. 43
21. Filters .. 45
16. Selective Hydroprocessing for New Lubricant Standards
I. A. Cody
1. Introduction ... 79
2. Hydroprocessing Approaches 83
3. Chemical Transformations 85
 3.1 Ring Conversion .. 85
 3.2 Paraffin Conversion .. 88
 3.3 Saturation .. 91
4. Process Combinations ... 96
 4.1 Ring Conversion-Hydroisomerization-Hydrofinishing 96
 4.2 Extraction-Hydroconversion 99
5. Next Generation Technology 101
6. References .. 103

17. Synthetic Lubricant Base Stock Processes and Products
Margaret M. Wu, Suzzy C. Ho, and T. Rig Forbus
1. Introduction .. 105
 1.1 Why Use Synthetic Lubricants? 106
 1.2 What is a Synthetic Base Stock? 106
1.3 A Brief Overview of Synthetic Lubricant History107
2. Overview of Synthetic Base Stocks108
 3.1 PAO ..109
 3.1.1 Chemistry for PAO Synthesis110
 3.1.2 Manufacturing Process for PAO112
 3.1.3 Product Properties ..112
 3.1.4 Comparison of PAO with Petroleum-based Mineral Base Stocks ...113
 3.1.5 Recent Developments - SpectraSyn Ultra as Next Generation PAO ..116
 3.1.6 Applications ..116
 3.2 Dibasic, Phthalate and Polyol Esters - Preparation, Properties and Applications ..118
 3.2.1 General Chemistry and Process118
 3.2.2 Dibasic Esters ...119
 3.2.3 Polyol Esters ...120
 3.2.4 Aromatic Esters ...121
 3.2.5 General Properties and Applications of Ester Fluids ...121
 3.3 Polyglycolglycols (PAG) ..123
 3.3.1 Chemistry and Process ...123
 3.3.2 Product Properties ..124
 3.3.3 Application ..125
 3.4 Other Synthetic Base Stocks ...125
4. Conclusion ...126
5. Acknowledgement ..127
6. References ...127

18. Challenges in Detergents and Dispersants for Engine Oils
 James D. Burrington, John K. Pudelski, and James P. Roski
 1. Introduction ...131
 2. Engine Oil Additive and Formulation131
 2.1 Detergents ..132
 2.2 Dispersants ...134
 3. Performance Chemistry ...137
 5. Future Polymer Backbones140
 6. Future Trends ..142
 6.1 Advanced Fluids Technology143
 6.2 Technologies for New Product Introduction144
 6.3 Performance Systems ..146
 7. Summary and Conclusions ...146
19. The Chemistry of Bitumen and Heavy Oil Processing
Parviz M. Rahimi and Thomas Gentzis
1. Introduction ... 149
2. Fractional Composition of Bitumen/Heavy Oil 150
3. Heteroatom-Containing Compounds .. 154
4. Properties of Asphaltenes (Solubility, Molecular Weight,
Aggregation) ... 157
4.1 Chemical Structure of Asphaltenes 159
4.2 Thermal Chemistry of Asphaltenes 160
5. Chemistry of Upgrading ... 163
5.1 Reaction of Feedstock Components - Simplification of
Upgrading Chemistry .. 168
6. Application of Hot Stage Microscopy in the Investigation of
the Thermal Chemistry of Heavy Oil and Bitumen 171
6.1 Effect of Feedstock Composition 171
6.2 Effect of Boiling Point .. 172
6.3 Effect of Additives ... 174
6.4 Effect of Deasphaltening .. 174
7. Stability and Compatibility .. 175
7.1 Physical Treatment .. 175
7.1.1 Effect of Distillation .. 175
7.1.2 Effect of Addition of Diluent 177
7.1.3 Thermal/Chemical Treatment 177
8. References ... 147

20. Mechanistic Kinetic Modeling of Heavy Paraffin Hydrocracking
Michael T. Klein and Gang Hou
1. Introduction .. 187
2. Approach and Overview ... 188
3. Model Development ... 191
3.1 Reaction Mechanism ... 191
3.2 Reaction Families ... 192
3.2.1 Dehydrogenation/Hydrogenation 192
3.2.2 Protonation/Deprotonation 192
3.2.3 Hydride and Methyl Shift 194
3.2.4 PCP Isomerization .. 194
3.2.5 β-Scission ... 194
3.2.6 Inhibition Reaction .. 195
3.3 Automated Model Building .. 196
3.4 Kinetics: Quantitative Structure Reactivity Correlations ... 198
6. Summary and Conclusion ... 202
7. References .. 203

21. Modeling of Reaction Kinetics for Petroleum Fractions
 Teh C. Ho

1. Introduction .. 205
2. Overview .. 206
 2.1 Partition-Based Lumping ... 206
 2.2 Total Lumping ... 207
 2.3 Reaction Network/Mechanism Reduction 207
 2.4 Mathematical Approaches to Dimension Reduction 208
3. Partition Based Lumping .. 209
 3.1 Top-down Approach .. 209
 3.2 Bottom-up Approach .. 211
 3.2.1 Mechanistic Modeling ... 212
 3.2.2 Pathways Modeling ... 215
 3.2.3 Quantitative Correlations ... 217
 3.2.4 Carbon Center Approach ... 218
 3.2.5 Lumping via Stochastic Assembly 218
4. Mathematical Reduction of System Dimension 220
 4.1 Sensitivity Analysis ... 220
 4.2 Time Scale Separation ... 221
 4.3 Projective Transformation ... 221
 4.3.1 First Order Reactions ... 221
 4.3.2 Non-Linear Systems .. 223
 4.3.3 Chemometrics .. 224
 4.4 Other Methods ... 224
5. Total Lumping: Overall Kinetics .. 224
 5.1 Continuum Approximation .. 225
 5.1.1 Fully Characterized First Order Reaction Mixtures 226
 5.1.2 Practical Implications .. 227
 5.1.3 Partially Characterized First Order Reaction Mixtures 228
 5.1.3.1 Plug Flow Reactor ... 229
 5.1.3.2 CSTR .. 230
 5.1.3.3 Diffusional Falsification of Overall Kinetics 231
 5.1.3.4 Validity and Limitations of Continuum Approach 232
 5.1.3.5 First Order Reversible Reactions 232
 5.1.3.6 Independent nth Order Kinetics 233

3.5 The C_{16} Paraffin Hydrocracking Model Dignostics 198
4. Model Results and Validation .. 199
5. Extension to C_{80} Model .. 201
6. Summary and Conclusion ... 202
7. References .. 203
Contents

5.1.3.7 Uniformly Coupled Kinetics .. 233
5.1.4 Upper and Lower Bounds .. 234
5.1.5 One Parameter Model ... 235
5.1.6 Intraparticle Diffusion .. 236
5.1.7 Temperature Effects ... 237
5.1.8 Selectivity of Cracking Reactions ... 237
5.1.9 Reaction Networks ... 238
5.2 Discrete Approach: Nonuniformly Coupled Kinetics 238
5.2.1 Homologous Systems .. 239
5.2.2 Long-Time Behavior .. 239

6. Concluding Remarks .. 241
7. References .. 242

22. Advanced Process Control

Paul R. Robinson and Dennis Cima

1. Introduction .. 247
2. Useful Definitions ... 247
3. Overview of Economics .. 249
4. Source of Benefits .. 250
5. Implementation ... 253
6. Costs ... 254
7. References .. 255

23. Refinery-Wide Optimization with Rigorous Models

Dale R. Mudt, Clifford C. Pedersen, Maurice D. Jett, Sriganesh Karur, Blaine McIntyre, and Paul R. Robinson

1. Introduction .. 257
2. Overview of Suncor ... 257
3. Refinery-Wide Optimization (RWO) ... 259
4. Rigorous Models for Clean Fuels .. 261
 4.1 Feedstock and Product Characterization 262
 4.2 Aspen FCC Overview .. 262
 4.3 Aspen Hydrocracker .. 266
 4.3.1 Reaction Pathways ... 269
 4.3.2 Catalyst Deactivation Model 271
 4.3.3 AHYC Model Fidelity ... 272
 4.4 Clean Fuels Planning ... 272
 4.4.1 Hydrogen Requirements for Deep Desulfurization 272
 4.4.2 Effects of Hydrotreating on FCC Performance 274
4.5 Conclusions ... 278
5. Acknowledgements .. 278
6. References .. 278
24. Modeling Hydrogen Synthesis with Rigorous Kinetics as Part of Plant-Wide Optimization
Milo D. Meixell, Jr.

1. Introduction ... 281
2. Steam Reforming Kinetics .. 283
 2.1 Methane Steam Reforming Kinetic Relationships 283
 2.2 Naphtha Steam Reforming Kinetic Relationships 286
 2.3 Coking ... 292
 2.4 Catalyst Poisoning .. 294
3. Heat Transfer Rates and Heat Balances 295
 3.1 Firebox to Catalyst Tube ... 297
 3.2 Conduction Across Tube Wall 299
 3.3 Fouling Resistance .. 299
 3.4 Inside Tube to Bulk Fluid 300
 3.5 Bulk Fluid to Catalyst Pellet 300
 3.6 Within the Catalyst Pellet 301
 3.7 Convection Section ... 301
 3.8 Fuel and Combustion Air System 302
 3.9 Heat Losses .. 302
4. Pressure Drop .. 302
 4.1 Secondary Reformer Reactions and Heat Effects 303
 4.2 Model Validation ... 304
 4.2.1 Validation Case 1 (Naphtha Feed Parameter Case) 305
 4.2.2 Validation Case 1a (Naphtha Feed Simulate Case) 307
 4.2.3 Validation Case 2 (Butane Feed Parameter Case) .. 307
 4.2.4 Validation Case 3 (Primary and Secondary Reformer
 Butane Feed Reconcile Case) 309
5. References ... 311

Appendix A Simulation Results .. 313
 Primary Reformer ... 313
 Adiabatic Pre-Reformer ... 317
 Oxo-Alcohol Synthesis Gas Steam Reformer 317

Appendix B Case Study of Effects of Catalyst Activity in a
 Primary Reformer ... 318

25. Hydrogen Production and Supply: Meeting Refiners' Growing Needs
M. Andrew Crews and B. Gregory Shumake

1. Introduction .. 323
2. Thermodynamics of Hydrogen .. 324
3. Technologies for Producing Hydrogen 326
 3.1 Steam Methane Reforming (SMR) Technologies 326
 3.1.1 Maximum Steam Export 326
3.1.2 Limited Steam Export ... 327
3.1.3 Steam vs. Fuel ... 328
3.1.4 Minimum Export Steam .. 329

3.2 Oxygen Based Technologies ... 330
 3.2.1 SMR/O2R ... 330
 3.2.2 ATR ... 331
 3.2.3 POX ... 332
 3.2.4 Products ... 332
 3.2.5 H2/CO Ratio ... 332
 3.2.6 Natural Ratio Range ... 333
 3.2.7 CO2 Recycle ... 333
 3.2.8 Import CO2 ... 335
 3.2.9 Membrane ... 335
 3.2.10 Cold Box .. 335
 3.2.11 Steam ... 335
 3.2.12 Shift Converter ... 335
 3.2.13 Other Considerations .. 335

3.3 Technology Comparison ... 336
 3.3.1 Process Parameters .. 337
 3.3.2 Export Steam .. 339
 3.3.3 Economic Considerations ... 340
 3.3.4 Oxygen Availability .. 340
 3.3.5 Hydrocarbon Feedstock .. 340
 3.3.6 H2/CO Ratio ... 340
 3.3.7 Natural Gas Price .. 340
 3.3.8 Capital Cost ... 340
 3.3.9 Conclusions ... 341

3.4 Hydrogen Purification ... 341
 3.4.1 Old Style ... 341
 3.4.2 Modern ... 342

4. Design Parameters for SMR’s ... 343
 4.1 Function ... 343
 4.2 Feedstocks ... 344
 4.3 Fuels .. 344
 4.4 Design .. 344
 4.5 Pressure ... 345
 4.6 Exit Temperature .. 346
 4.7 Inlet Temperature .. 346
 4.8 Steam/Carbon Ratio ... 347
 4.9 Heat Flux ... 347
 4.10 Pressure Drop ... 348
 4.11 Catalyst ... 348
 4.12 Tubes .. 349
4. Flow Distribution

4.13 Burners ... 349
4.14 Flow Distribution .. 350
4.15 Heat Recovery .. 350

5. Environmental Issues

5. Flue Gas Emissions .. 351
5.1 Flue Gas Emissions .. 351
5.2 Process Condensate (Methanol and Ammonia) 352
5.3 Wastewater .. 354

6. Monitoring Plant Performance

7. Plant Performance Improvements

7. Plant Performance Improvements 357

8. Economics of Hydrogen Production

8. Economics of Hydrogen Production 359
8.1 Overall Hydrogen Production Cost 361
8.2 Overall Production Cost Comparison 361
8.3 Evaluation Basis .. 362
8.4 Utilities ... 362
8.5 Capital Cost ... 363
8.6 “Life of the Plant” Economics 363
8.7 Sensitivity to Economic Variables 364
8.8 Feed and Fuel Prices ... 365
8.9 Export Steam Credit ... 366

9. Conclusion

9. Conclusion ... 366

10. Additional Reading

10. Additional Reading .. 367

Nick Hallale, Ian Moore, and Dennis Vauk

1. Introduction ... 371
2. Assets and Liabilities .. 372
3. It's All About Balance ... 373
4. Put Needs Ahead of Wants .. 375
5. Beyond Pinch .. 382
 5.1 Multi-Component Methodology 383
 5.2 Hydrogen Network Optimization 384
6. You Don't Get Rich by Saving 388
7. Conclusions ... 391
8. References ... 392

27. Improving Refinery Planning Through Better Crude Quality Control

J. L. Peña-Diez

1. Introduction ... 393
2. Crude Oil Quality Control .. 394
3. New Technologies in Crude Oil Assay Evaluation 396
 3.1 Analytical Methods ... 397
 3.2 Chemometric Methods ... 397
4. Crude Assay Prediction Tool (CAPT) 398
 4.1 Model Description ... 398
 4.2 Potential Applications .. 402
 4.3 Model Results .. 403
5. Concluding Remarks .. 405
6. References .. 406

Index .. 409