Biogeography-Based Optimization: Algorithms and Applications
Biogeography-Based Optimization: Algorithms and Applications
Nature-inspired optimization algorithms are a class of heuristic algorithms that mimic natural phenomena to solve complex optimization problems which are intractable by traditional exact algorithms. Since John Holland developed the genetic algorithm (GA) in the early 1970s, nature-inspired algorithms have aroused great research interests. The last decade has witnessed a rapid development of new nature-inspired algorithms which exhibit wide applicability and promising performance on a variety of engineering problems.

In 2008, Dan Simon proposed a new algorithm named biogeography-based optimization (BBO), which mimics the evolution process of habitats based on migration to evolve a population of solutions toward the global optimum or a near-optimum. BBO exhibits competitive performance compared with many popular algorithms and has attracted much interest from academia and industry.

Our research team has been working on nature-inspired algorithms and their applications for a decade. Since the proposal of BBO, we have done a lot of work on the improvement of BBO as well as the application of BBO to many engineering optimization problems. The results of our work have been published in well-known academic journals and conferences including Computer & Operations Research, IEEE Transactions on Evolutionary Computation, IEEE Transactions on Fuzzy Systems, IEEE Transactions on Intelligent Systems, Applied Soft Computing, IEEE Congress on Evolutionary Computation (CEC), International Conference on Swarm Intelligence. In particular, in 2014 we proposed a major improvement of BBO, called ecogeography-based optimization (EBO). Also in 2014, our study on the application of BBO to the emergency scheduling of engineering rescue tasks in disasters won the Runner-Up of International Federation of Operational Research Societies (IFOPS) Prize for Development.

This book is primarily intended for researchers, engineers, and students who are interested in BBO and/or who want to borrow ideas from BBO in their researches in all aspects of intelligent computing. The chapters cover the basic BBO algorithm and its variants, extensions, and applications. Chapter 1 introduces the basic concepts of optimization problems and algorithms, Chap. 2 gives a brief overview of the BBO algorithm and its developments, Chaps. 3 and 4 present two
important improved versions of BBO, Chap. 5 describes hybrid BBO algorithms, and Chaps. 6–9 describe the application of BBO to optimization problems in four typical areas including transportation, job scheduling, image processing, and machine learning. A part of source code and data sets used in this book can be found in http://compintell.cn/en/dataAndCode.html.

Besides the authors, our students including Xiaohan Zhou, Yichen Du, Bei Zhang, and Xiaobei Wu have also made essential contributions in algorithm testing, result analysis, and proofreading of the manuscript. We are grateful for the help of Prof. Haiping Ma of Shaoxing University and Prof. Qi Xie of Hangzhou Normal University. We would also like to thank Mr. Yingbiao Zhu of the Science Press, China. The work was supported by National Natural Science Foundation of China (Grant Nos. 61473263 and U1509207), Zhejiang Provincial Natural Science Foundation (Grant No. LY14F030011), and Scientific Research Starting Foundation of Hangzhou Normal University (Grant No. 4115C5021820424).

Hangzhou, China
June 2018

Yujun Zheng
Hangzhou Normal University
Contents

1 Optimization Problems and Algorithms .. 1
 1.1 Introduction .. 1
 1.2 Optimization Problems 2
 1.2.1 Continuous Optimization Problems 2
 1.2.2 Combinatorial Optimization Problems 5
 1.3 Exact Optimization Algorithms 7
 1.3.1 Gradient-Based Algorithms 7
 1.3.2 Linear Programming Algorithm 8
 1.3.3 Branch-and-Bound 9
 1.3.4 Dynamic Programming 11
 1.4 Heuristic Optimization Algorithms 12
 1.4.1 Genetic Algorithms 12
 1.4.2 Simulated Annealing 14
 1.4.3 Ant Colony Optimization 16
 1.4.4 Particle Swarm Optimization 17
 1.4.5 Differential Evolution 18
 1.4.6 Harmony Search 19
 1.4.7 Fireworks Algorithm 21
 1.4.8 Water Wave Optimization 22
 1.5 Summary .. 24

References ... 24

2 Biogeography-Based Optimization ... 27
 2.1 Introduction .. 27
 2.2 Background of Biogeography 27
 2.3 The Basic Biogeography-Based Optimization Algorithm 32
 2.3.1 The Migration Operator 32
 2.3.2 The Mutation Operator 33
2.3.3 The Algorithmic Framework 34
2.3.4 Comparison with Some Classical Heuristics 35
2.4 Recent Advances of Biogeography-Based Optimization 36
 2.4.1 Improved Biogeography-Based Optimization Algorithms 36
 2.4.2 Adaption of BBO for Constrained Optimization 40
 2.4.3 Adaption of BBO for Multi-objective Optimization ... 43
 2.4.4 Adaption of BBO for Combinatorial Optimization 45
2.5 Summary .. 47
References ... 47

3 Localized Biogeography-Based Optimization: Enhanced By Local Topologies 51
 3.1 Introduction .. 51
 3.2 Population Topology 51
 3.2.1 Global Topology 51
 3.2.2 Local Topologies 53
 3.2.3 Research of Heuristic Algorithms with Local Topologies 56
 3.3 Localized Biogeography-Based Optimization Algorithms 57
 3.3.1 Local-BBO with the Ring Topology 57
 3.3.2 Local-BBO with the Square Topology 58
 3.3.3 Local-BBO with the Random Topology 58
 3.4 Computational Experiments 61
 3.5 Summary .. 66
References ... 66

4 Ecogeography-Based Optimization: Enhanced by Ecogeographic Barriers and Differentiations 69
 4.1 Introduction .. 69
 4.2 Background of Ecogeography 69
 4.3 The Ecogeography-Based Optimization Algorithm 71
 4.3.1 Local Migration and Global Migration 71
 4.3.2 Migration Based on Maturity 72
 4.3.3 The Algorithmic Framework of EBO 72
 4.4 Computational Experiments 73
 4.4.1 Experimental Settings 73
 4.4.2 Impact of the Immaturity Index η 74
 4.4.3 Comparison of the 10-D Functions 74
 4.4.4 Comparison of the 30-D Functions 78
 4.4.5 Comparison of the 50-D Functions 83
 4.4.6 Discussion 83
 4.5 Summary .. 86
References ... 87
5 Hybrid Biogeography-Based Optimization Algorithms 89
 5.1 Introduction .. 89
 5.2 Hybridization with Differential Evolution 89
 5.2.1 The DE/BBO Algorithm 89
 5.2.2 Local-DE/BBO ... 91
 5.2.3 Self-adaptive DE/BBO 97
 5.3 Hybridization with Harmony Search 104
 5.3.1 Biogeographic Harmony Search 104
 5.3.2 Computational Experiments 105
 5.4 Hybridization with Fireworks Algorithm 109
 5.4.1 A Hybrid BBO and FWA Algorithm 109
 5.4.2 Computational Experiments 110
 5.5 Summary ... 114
References .. 114

6 Application of Biogeography-Based Optimization in Transportation 117
 6.1 Introduction .. 117
 6.2 BBO for General Transportation Planning 117
 6.2.1 A General Transportation Planning Problem 117
 6.2.2 BBO Algorithms for the Problem 119
 6.2.3 Computational Experiments 119
 6.3 BBO for Emergency Transportation Planning 123
 6.3.1 An Emergency Transportation Planning Problem 123
 6.3.2 A BBO Algorithm for the Problem 124
 6.3.3 Computational Experiments 125
 6.4 BBO for Emergency Railway Wagon Scheduling 127
 6.4.1 An Emergency Railway Wagon Scheduling Problem 128
 6.4.2 A Hybrid BBO/DE Algorithm for the Problem 131
 6.4.3 Computational Experiments 134
 6.5 BBO for Emergency Air Transportation 137
 6.5.1 An Emergency Air Transportation Problem 137
 6.5.2 BHS and EBO Algorithms for the Problem 139
 6.5.3 Computational Experiments 139
 6.6 Summary ... 140
References .. 141

7 Application of Biogeography-Based Optimization in Job Scheduling 143
 7.1 Introduction .. 143
 7.2 BBO for Flow-Shop Scheduling 143
 7.2.1 Flow-Shop Scheduling Problem 143
 7.2.2 A BBO Algorithm for FSP 146
 7.2.3 Computational Experiments 147
9.3.2 BBO Algorithms for ANN Structure and Parameter Optimization 204
9.3.3 Computational Experiment .. 205
9.4 BBO for Fuzzy Neural Network Training .. 207
 9.4.1 The Problem of FNN Training .. 207
 9.4.2 An EBO Algorithm for FNN Parameter Optimization 210
 9.4.3 Computational Experiment .. 211
9.5 BBO for Deep Neural Network Optimization 212
 9.5.1 The Problem of DNN Training 212
 9.5.2 An EBO Algorithm for DNN Structure and Parameter Optimization 214
 9.5.3 Computational Experiment .. 215
9.6 Summary ... 215
References .. 216

Index ... 219