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Preface

The attraction of achieving higher efficiency and reliability for industrial plants and
networked systems has created new research opportunities in the control and
optimisation field. Among different design methods, the model predictive control
(MPC) strategies, first developed for the petroleum refining industry, have proved
to be effective in many applications. Originally found a widespread use in the
stand-alone sites, the non-centralised adaption such as distributed and decentralised
MPCs have been progressing towards more heterogeneous architectures that are
able to cope with system complexities and variations in application domains.

This book presents a stabilising method for the control of interconnected systems
having mixed connection configurations with distributed and decentralised model
predictive control schemes. The novel notions of asymptotically positive realness
constraint (APRC) and quadratic dissipativity constraint (QDC) are introduced as a
fundamentally constituent part of this book. In both constraints, the function of
inputs and outputs in the form of a supply rate, or a ‘supply power’, is quadratic.
From the communication and information perspective, the quadratic constraint
packs two pieces of information, the control and state vectors, into one variable,
before carrying to different locations, and then unpacks them for use with the local
control algorithm. The employment of quadratic constraints in two distinct
approaches, segregation from and integration into the control algorithms, for the
constrained stabilisation of interconnected systems is another contribution of this
book.

Solutions for linear systems are given in distributed and decentralised strategies
whereby the communication between subsystems is either fully connected, partially
connected or totally disconnected. The interconnected systems and their distributed
computerised-control platforms are considered within the realm of a cyber-physical
system consisting of the physical connections between subsystems and the com-
munication links between local computing processors. Within the auspice of the
integrated construction method, the distributed and decentralised MPC strategies
deal with the communication links from the cyber-connection side—the subsystems
are wholly or partially connected in a distributed MPC scheme while being totally
disconnected in a decentralised MPC.
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By having the control inputs entirely or partially decoupled between subsystems,
and no additional constraints imposed on the interactive variables, rather than the
coupling constraint itself, the proposed approaches outreach various types of net-
worked systems and applications. The effects of coupling delays and device net-
works are also resolved in part of the development. For parallelised connections that
emulate parallel redundant structures and have unknown splitting ratios, a fully
decentralised control strategy is developed as an alternative to the hybrid system
approach. For the semi-automatic control systems, involved with both closed-loop
and human-in-the-loop regulatory controls, the stability-guaranteed method of
decentralised stabilising agents, that are interoperable with different control algo-
rithms, is germinated and implemented for each single subsystem.

For nonlinear input-affine systems, the extended output vector including the
vector field and the state vector are introduced such that the dissipativity criterion
can be rendered in linear matrix inequalities. The compound vector can be viewed
as manifest variables in the beviourial framework for dynamical systems. From the
perspective of the dissipative system theory, both the storage function and supply
rate with the extended output vectors are parameterised to avoid any conserva-
tiveness that may incur to the stabilisation of nonlinear systems.

In this book, MPC is formulated with state-space models having a standardised
cost function. The stability constraint here is a constraint imposed on the
current-time control vector, independently to the MPC objective function. For
interconnected systems, the terminal constraint computations are formidable when
dealing with subsystems having dissimilar dynamics whose settling times are
heterogeneous. The quadratic constraint approach resolves this difficulty by having
a constraint on the current-time control vector. The state constraint and recursive
feasibility are, nevertheless, not included in this book.

An extension to new applications with the Internet of Things (IoT) is also
presented with some dependable control schemes in which multiple controllers and
sensors are cross-connected via the IoT communication network to ensure the
duty-standby architecture for achieving quantitatively higher reliability of
cyber-physical systems.

A broad range of applications in the process and manufacturing industries,
networked robotics, networked control systems and network-centric systems such
as power systems, telecommunication networks and chemical processes will benefit
from the approaches in this book. Illustrative examples of networked interconnected
systems are provided with numerical simulations in MATLAB environment.
Specifically, a power system having four control areas, a dependable controller for
cyber-physical systems and some other numerical examples are implemented with
the distributed and decentralised MPC strategies employing the quadratic constraint
approach to demonstrate the theoretical appraisals.

The developments are presented in seven chapters. This book starts with an
introduction to the quadratic constraint in the time domain with a different perspec-
tive, as stated in Chap. 1. Here, the differences between this closed-loop perspective
on the dissipation-based constraint and the other open-loop dissipative system
approaches in the well-known interconnection stability conditions with passivity and



Preface vii

small-gain theorems will be highlighted. A brief review on the MPC applications and
the stabilising methods for the previously developed distributed MPC strategies is
also given in the first chapter. Chapter 2 is dedicated to the quadratic constraints and
their applications to the decentralised MPC of interconnected systems as the enforced
attractivity constraints. In the next chapter, the attractivity conditions for the complex
interconnected systems that have parallelised connections with unknown splitting
ratios are presented, Chap. 3. An alternative constructive method of stabilising agents
with the QDC is then delineated following in Chap. 4. Chapter 5 outlines a deter-
ministic approach to the data lost processes with the presented dissipation-based
quadratic constraints. A virtual perturbed cooperative-state feedback (PSF) strategy
will be presented in the second part of this chapter. The available communication
network in a cyber-physical system is capitalised on for improving the control per-
formance with the PSF strategy. The developments for interconnected systems
having a coupling delay element with the accumulative quadratic constraints are
subsequently provided in Chap. 6. Chapter 7 is dedicated to the QDC application to
the dependable control systems.

The general dissipativity constraint (GDC) method for the control design and
synthesis of multi-variable systems in the discrete-time domain is presented in
Appendix A. APRC and QDC with quadratic supply functions are the two special
cases of the GDC. The dissipation-based constraints with a general supply function
and the stability with a relaxed non-monotonic Lyapunov function and the
input-to-power-and-state stabilisability (IpSS) are presented in this appendix.
The GDC method for stabilising the interconnected systems with distributed,
decentralised and dependable control architectures is well suited to the modern
cyber-physical systems incorporating scalable and flexible communication net-
works. With emerging technologies in the Internet of Things (IoT) and cloud
computing, the new architecture and algorithms will provide the tractability for
implementations in a connected and ‘smart’ environment, yet help achieve the
required reliability and continuity of the operational systems. The well-known MPC
algorithms that employ plant models in the future state prediction for computing the
control moves with convex optimisations have been found agile for deploying with
cyber-physical systems.

During the course of preparation of this monograph, there were a series of
invaluable discussions with Profs. Jan Maciejowski, Hung T. Nguyen and
Tuan D. Hoang, to whom the authors are much indebted. In particular, the first author
would like to gratefully acknowledge support obtained from the Singapore National
Research Foundation (NRF) under its Campus for Research Excellence And
Technological Enterprise (CREATE) programme and the Cambridge Centre for
Advanced Research and Education in Singapore (Cambridge CARES), CAT project.
Support received from various internal grant schemes at the Faculty of Engineering
and Information Technology and the University of Technology Sydney, Australia, is
also acknowledged.

Sydney, Australia Anthony Tri Tran C.
November 2017 Quang Ha
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