Human Chromosome Variation: Heteromorphism, Polymorphism and Pathogenesis
Human Chromosome Variation: Heteromorphism, Polymorphism and Pathogenesis

Second Edition
Early experience in medicine quickly teaches the importance and challenges of knowing what is normal. Comparisons between symmetrical body parts, similar to side-by-side chromosome pairs, may help distinguish the difference between normal variation and abnormal findings. The greater the depth of detail in chromosome and copy number variant [CNV] analyses, the more difficult it has become to differentiate the polymorphic from the pathogenic change. Many claims of pathogenic variants have been revised and been re-classified as benign or of uncertain significance. The key theme of this important text aims to focus on the key distinction between pathogenic CNVs and chromosomal polymorphisms.

Microdeletions, and less so for microduplications, may be associated with diverse phenotypes, including intellectual disability, congenital malformation, autism, schizophrenia, and epilepsy. The remarkable different manifestations of a microdeletion at a specific location, when compared to a duplication at the identical position, remain to be fully explained. It is also a salutary lesson that a pathogenic variant may not necessarily be pathogenic in patients with different genomic backgrounds. Confounding our understanding of chromosomal and molecular biology is the observation of recurrence of autism in siblings with different CNV abnormalities. Unanswered questions remain in this context about etiology and pathogenesis and the possible role of epigenetic factors. In this edition, the authors have added a very helpful sequential chromosome tabulation of known CNVs with associated phenotypic features. While undoubtedly many more microdeletion/duplication syndromes will be described in the future, it is likely that the authors have captured the most common and important syndromes.

Burgeoning technology, beyond the use of microarrays, include the increasing use of high resolution analyses by whole exome sequencing and whole genome sequencing. Although these analyses enable identification of single nucleotide sequence changes, they have also revealed a wealth of variations that will engage the attention of geneticists for many years to come. A valuable addition to this volume are Chaps. 9–12, that provide knowledge and insight into the increasingly
complex involvement of CNVs in the etiology and pathogenesis of single gene diseases.

Excellent information and data, enriched in this edition by the addition of the chapters on CNVs, will be of inestimable value to molecular cytogeneticists and all who endeavor to understand the variations that, to a lesser or greater degree, render us healthy. After all, epigenetic issues notwithstanding, are we not simply the sum of our variants, hopefully mostly normal!

Aubrey Milunsky, MB.B.Ch., D.Sc., F.R.C.P., F.A.C.M.G., D.C.H.
Center for Human Genetics
Cambridge, MA, USA

and

Department of Obstetrics & Gynecology
Tufts University School of Medicine
Boston, MA, USA
Preface

In the *Atlas of Human Chromosome Heteromorphisms*, we emphasized the rapid change in standards of care in clinical cytogenetics—“that today’s research almost immediately becomes tomorrow’s clinical test. What was once unsolvable becomes approachable with new technologies, almost before the... clinician or laboratory director may be aware they are available.” This statement has proven remarkably prophetic as microarray analysis and whole exome sequencing technologies have been co-opted for clinical genetic testing, the former now endorsed as a standard of care. The problems that justified survey of heteromorphic regions on chromosomes to help distinguish benign from clinically significant variation have now been extrapolated to high resolution DNA analyses. Just as the previous Atlases did not provide a panacea for such problems, neither does the present volume, but we do now add clinical genetic principles and case examples that help address the polymorphic versus pathogenic dilemma.

Standard methods of identifying most human chromosome abnormalities and variants (heteromorphisms) have been in use for more than four decades. The benign nature of heteromorphism of certain chromosomal regions was established in early population studies and information has not been much improved since. Although laboratories strove for longer chromosomes with higher band resolution, these advancements did not significantly add new variants or aid in interpretation of known variants detectable by standard light microscopy. Fluorescence in situ hybridization (FISH) in the 1990s allowed better characterization of some variants and revealed a few new variants that were not detectable by standard cytogenetic methods. Likewise, however, they did not necessarily improve on the distinction between variants that are clinically significant and those that are not.

Improved chip (array) technologies can detect copy number variants (CNVs) that are widely dispersed throughout the human genome and are not detectable by standard microscopy. CNVs are often produced by unequal crossing over at “hotspots” with flanking repetitive DNA sequences. These submicroscopic microdeletions and microduplications can be specified in exact numbers of
nucleotides since the human genome project has specified the nucleotide sequence for every chromosome (e.g., 1 to \(\sim\) 250 million for chromosome 1). Large scale personalized DNA sequencing defines another type of submicroscopic chromosome change in the form of single nucleotide substitutions, alterations of several nucleotides (like the 3-base pair deltaF508 mutation in cystic fibrosis), or complex repetitive DNA rearrangements like the expanding triplet repeats associated with the fragile site at Xq27. Deciding if these precisely specified CNVs or the single nucleotide changes detected by massive parallel (NextGen) sequencing are polymorphic (benign CNVs or SNPs) or pathogenic remains difficult, and we supplement clinical examples with conceptual criteria and database references to address this problem.

Another example of chromosome change now explained by DNA sequence difference are the “common” and “rare” chromosomal fragile sites, first observed in the 1970s and given renewed interest by clinical relevance. Fragile sites on chromosomes have been observed to occur in specific bands, under a variety of in vitro conditions, including low folic acid, inhibition of folic acid metabolism, etc. Molecular characterization of the fragile Xq27.3 site associated with X-linked mental retardation provided a new mechanism for genetic disease (expanding DNA repeats), but most fragile sites have no direct clinical association. Common or rare (<5% of individuals) fragile sites can be induced in cultured cells from most people, and it is well known that they occur at sites frequently involved in chromosome rearrangement that arise in people or cancers. More recent molecular characterization has uncovered proto-oncogenes at several such fragile sites, and screening for haplo-insufficient tumor suppressor genes (by microarray) or germline oncogene mutations is an important thrust of modern genetic testing.

Just as the previous volumes changed the title from “Atlas of Human Chromosome Heteromorphism” to “Human Chromosome Variation: Heteromorphism and Polymorphism,” so has this volume morphed to Human Chromosome Variation: Heteromorphism, Polymorphism, and Pathogenesis to consider all levels of chromosomal DNA variation and to provide some examples of clinical correlation. We have retained intact as Part I the core of prior volumes: Pictorial representations of common and not so common heteromorphisms. Part II concerns the advances in molecular cytogenetics and DNA diagnosis, including review of the common and rare fragile sites and discussion of polymorphisms and copy number variations (CNVs) that cannot be detected except at the molecular level, the latter expanded from the previous volume. Part I covers variations seen by routine karyotype or direct analysis of cells and chromosomes by fluorescence in situ hybridization (FISH). Part II includes information on chip-based technologies, and (briefly, as a guide to the future) approaches to genome sequencing, as well as the clinical genetic approach, the latter because discrimination of benign from clinically significant variation is much easier when the genetic test is appropriate to the category of potential genetic disease. Case studies illustrate how the distinction between benign or pathogenic variant, the major objective of this work, is carried out in practice, increasingly challenging as the
resolution of genetic testing extends from chromosome band to the DNA segment and nucleotide level. A summary closes by emphasizing that clinical judgment in ordering and interpreting genetic tests is the fulcrum for balancing variation versus disease.

Oakdale, USA
Lubbock, USA
Lubbock, USA

Herman E. Wyandt
Golder N. Wilson
Vijay S. Tonk
Acknowledgements

This is a review of the work of many investigators spanning more than five decades of cytogenetic research, and now including nearly two decades of microarray and whole genome sequencing data. It is not possible to adequately represent the early efforts of investigators such as A. Craig-Holms, J.P. Geraedts, P. Jacobs, H. Lubs, W.H. MacKenzie, R.E. Magenis, A.V.N. Mikelsaar, H.J. Muller, S. Patil, P. Pearson, M. Shaw, and many others who perceived the need to study chromosome heteromorphisms in populations and who attempted to give order to a complicated topic. For specific examples of common and rare heteromorphisms, in the Atlas of Human Chromosome Heteromorphisms, individual contributions from colleagues around the world were an essential ingredient.

Contributors of figures or other substantive materials to the Atlas were listed and annotated in a format that was retained in the subsequent edition of Human Chromosome Variation: Heteromorphism and Polymorphism, and is retained again in this edition. Once again, we acknowledge (1) the contribution of Lauren Jenkins at Kaiser Permanente Medical Group (San Jose), who provided us a significant number of excellent examples of chromosome heteromorphisms in the original volume, and (2) the use of archived material from our respective laboratories. The cytogenetic technologists and associates who helped provide examples for the Atlas from these sources include: Xin Li Huang, Alex Dow, Agen Pan, Zhen Kang, Xiao Wu, and Hong Shao in the Center for Human Genetics at Boston University, and Caro E. Gibson, Manju G. Jayawickrama, Eun Jung Lee, Jee Hong Kyhme, Eun-Hee Cho, Pam Nye and Vhung-Hwan Yuk in the Cytogenetics Laboratory at Texas Tech University. Sun Han Shim (postdoctoral fellow), in the Center for Human Genetics, also helped provide key examples of FISH variants. We must also acknowledge the large amount of published material for which we obtained permission to reproduce in this and previous volumes.

The information and format relating to heteromorphism has, for the most part, been retained in its entirety in the present edition, and we continue to be grateful for the early support by the following individuals in the Department of Pediatrics,
Texas Tech University Health Sciences Center in Lubbock, TX: Richard M. Lampe, M.D., Chairman; Surendra K. Varma, M.D., Vice Chairman; John A. Berry, Administrator. We are similarly grateful to Aubrey Milunsky, M.D., D.Sc., F.R.C.P, F.A.C.M.G., D.C.H (formerly Professor of Human Genetics, Pediatrics, Pathology and Obstetrics & Gynecology and Director of the Center for Human Genetics, Boston University School of Medicine, Boston, MA), now Founder and Co-Director, Center for Human Genetics Cambridge, MA, and Adjunct Professor of Obstetrics and Gynecology, Tufts University School of Medicine, Boston, MA, and to Jeff Milunsky, M.D. (formerly Associate Professor of Pediatrics, Genetics and Genomics and Associate & Clinical Director of the Center for Human Genetics), now Co-Director, Center for Human Genetics, Cambridge, MA.

For this latest edition, *Human Chromosome Variation: Heteromorphism, Polymorphism and Pathogenesis,* this project would not have been completed without the support of the Pediatrics department at Texas Tech University Health Sciences Center and the Texas Tech University Health Sciences Center Clinical Research Institute in Lubbock Texas. A fundamental contribution to this book was by Division Administrator Cortney Becker, whose Microsoft Excel database of aCGH results provided the Texas Tech data summarized in the chromosome chapters of Chap. 10. We are also grateful to the following individuals in the department of Pediatrics at Texas Tech University Health Sciences Center in Lubbock, Texas: Richard M. Lampe, M.D.—Chairman, John A Berry—Chief Administrator, Jill Johnston—Lead Cytogenetic Technologist and Tejaswini Reddy, M.D./Ph.D. student at Texas A&M University, College Station, Texas. We owe special thanks to Sahil S. Tonk for the many hours spent in the daunting task of checking the accuracy of the many hundreds of references in this latest edition. Last but not least, we want to acknowledge the many families whose sharing of concern and information makes medical advances possible.

We also owe specials thanks for critical review of the manuscript to Dr. Roger Schultz and Dr. Ankita Patel. We must also thank Peter Butler and staff at Springer Science+Business Media for taking a personal interest, in the *Atlas of Human Chromosome Heteromorphisms* and in *Human Chromosome Variation: Heteromorphism and Polymorphism.* We are similarly grateful to Thijs van Vlijmen, senior publishing editor, Hema Suresh, production editor, and Sara Germans at Springer Nature for help with the present edition.
2.7 Single Nucleotide Polymorphisms (SNPs) ... 30
References ... 30

3 Frequencies of Heteromorphisms ... 37
3.1 By Q- and C-Banding .. 37
 3.1.1 The New-Haven Study ... 40
 3.1.2 Study Comparisons ... 43
 3.1.3 Additional Studies of Racial or Ethnic Differences 43
3.2 Specialized Banding Studies .. 45
References ... 45

4 Clinical Populations ... 47
 4.1 Spontaneous Abortions and Reproductive Failure 47
 4.2 Nucleolar Organizing Regions and Non-disjunction 48
 4.3 Satellite Association .. 50
 4.4 Mobile Elements and Cryptic Translocations Involving
 Acrocentrics ... 50
 4.5 Cancer ... 51
References ... 53

5 Euchromatic Variants ... 57
 5.1 Introduction ... 57
References ... 59

6 Chromosome Heteromorphism (Summaries) 63
 6.1 Chromosome 1 ... 64
 6.2 Chromosome 2 ... 68
 6.3 Chromosome 3 ... 72
 6.4 Chromosome 4 ... 74
 6.5 Chromosome 5 ... 76
 6.6 Chromosome 6 ... 78
 6.7 Chromosome 7 ... 79
 6.8 Chromosome 8 ... 80
 6.9 Chromosome 9 ... 82
 6.10 Chromosome 10 .. 91
 6.11 Chromosome 11 .. 93
 6.12 Chromosome 12 .. 94
 6.13 Chromosome 13 .. 94
 6.14 Chromosome 14 .. 98
 6.15 Chromosome 15 .. 102
 6.16 Chromosome 16 .. 109
 6.17 Chromosome 17 .. 112
 6.18 Chromosome 18 .. 113
 6.19 Chromosome 19 .. 115
 6.20 Chromosome 20 .. 116
6.21 Chromosome 21 117
6.22 Chromosome 22 120
6.23 Chromosome X 122
6.24 Chromosome Y 123
References .. 129

Part II Genomics and DNA Polymorphism: Molecular Cytogenetics and DNA Diagnosis

7 Fragile Sites ... 145
References .. 170

8 Chromosome Variation Detected by Fluorescent In Situ Hybridization (FISH) 175
8.1 Types of FISH Probes 176
8.2 FISH Applications 177
8.3 Studies of Heteromorphisms by FISH 178
8.4 FISH Variants .. 179
8.4.1 FISH Results with Centromeric Repeats 180
8.4.2 Subtelomeric Deletions/Duplications: Normal Variation or Chromosome Abnormality? 182
References .. 187

9 Array-Comparative Genomic Hybridization/Microarray Analysis: Interpretation of Copy Number Variants 191
9.1 Human Genome Structure 191
9.1.1 The Human Genome Project 192
9.1.2 Copy Number Variation: An Aspect of Genomic Disease 194
9.2 Mechanisms and Limitations aCGH 195
9.2.1 Example of aCGH Methodology 196
9.2.2 aCGH Results 197
9.3 Pathogenesis Versus Polymorphism: A Dilemma
Compounded by aCGH 200
9.3.1 aCGH Examples That Support Single-Gene Pathogenesis 201
9.3.2 Examples Where Single Gene Dosage Does not Explain Phenotype 203
9.3.3 A Stochastic Approach to Chromosomal Phenotypes and Aphorisms for Chromosomal Disease 206
9.4 Clinical Approach to Genetic Testing 210
9.4.1 Pediatric Genetics 211
9.4.2 Reproductive Genetics: Infertility, Recurrent Pregnancy Loss, and Prenatal Diagnosis 218
9.5 Case Examples of aCGH Results ... 219
 9.5.1 Cases Where the Interpretation of Clinical Significance Is Clear and the Diagnosis Provides Good Prognostic Information ... 219
 9.5.2 Cases Deemed Clinically Significant with Uncertain Prognoses 224
 9.5.3 Cases of Unclear Significance or Prognosis 228
9.6 Summary ... 229
References ... 229

10 A CNV Catalogue ... 235
 10.1 Chromosome 1 ... 248
 10.2 Chromosome 2 ... 254
 10.3 Chromosome 3 ... 261
 10.4 Chromosome 4 ... 266
 10.5 Chromosome 5 ... 271
 10.6 Chromosome 6 ... 276
 10.7 Chromosome 7 ... 282
 10.8 Chromosome 8 ... 290
 10.9 Chromosome 9 ... 298
 10.10 Chromosome 10 ... 302
 10.11 Chromosome 11 ... 309
 10.12 Chromosome 12 ... 314
 10.13 Chromosome 13 ... 318
 10.14 Chromosome 14 ... 322
 10.15 Chromosome 15 ... 326
 10.16 Chromosome 16 ... 334
 10.17 Chromosome 17 ... 341
 10.18 Chromosome 18 ... 352
 10.19 Chromosome 19 ... 357
 10.20 Chromosome 20 ... 363
 10.21 Chromosome 21 ... 368
 10.22 Chromosome 22 ... 371
 10.23 X Chromosome ... 376
 10.24 Y Chromosome ... 386
References ... 388

11 Gene and Genome Sequencing: Interpreting Genetic Variation at the Nucleotide Level 419
 11.1 DNA Diagnosis by Targeted DNA Sequencing 419
 11.1.1 From Inheritance Pattern to DNA Diagnosis 420
 11.1.2 Examples of Targeted DNA Sequencing for Mendelian Disorders 424
11.1.3 Examples of DNA Sequencing Panels
for Mendelian Disorders Conferring
Particular Clinical Symptoms 428

11.2 DNA Diagnosis by Whole Exome Sequencing 430
11.2.1 WES Methods 431
11.2.2 Approaches to Determining Pathogenesis
for WES Results 433

11.3 Case Examples of WES Analysis 436
11.3.1 Examples of Mutations in Genes Previously
Highlighted by ACGH 437
11.3.2 Examples of Mutations in Genes Previously
Associated with Neurobehavioral Phenotypes 441
11.3.3 Examples of Novel Mutations with Variable
Evidence for Clinical Relevance 443

11.4 DNA Risk Modification, Pharmacogenomics,
and Precision Medicine 447
11.4.1 DNA Markers Predicting Drug Metabolism
(Pharmacogenomics) 447
11.4.2 DNA Markers Predicting Disease Risks 451

References .. 452

12 Summary .. 455

References .. 458

Glossary ... 461

Index ... 489
Figure Contributors

Arturo Anguiano, M.D. (c17, c29) Quest Diagnostics Incorporated, San Juan, Capistrano, CA, USA

Petr Balicek, M.D. (c16) Division of Medical Genetics, University Hospital, Kraklove, Czech Republic

Peter A. Benn, Ph.D. (c1, c11, c41) Division of Human Genetics, University of Connecticut Health Center, Farmington, CT, USA

Center for Human Genetics, Boston University School of Medicine, Boston, MA, USA (c1)

Cytogenetics Laboratory, Division of Cytogenetics and Medical Genetics, Texas; Tech University Health Sciences Center, Lubbock, TX, USA (c43)

J.J.M. Engelen, Ph.D. (c40) Department of Molecular Cell Biology and Genetics, Universiteit Maastricht, Maastricht, The Netherlands

James M. Fink, M.D., Ph.D. (c37, c38) Hennepin County Medical Center, Minneapolis, MN, USA

Cheong Kum Foong (c31, c32) Cytogenetic Laboratory, Kandang Kerbau Women’s and Children’s Hospital, Singapore

Steven L. Gerson, Ph.D. (c18) Dianon Systems, Stratford, CT, USA

Patricia N. Howard-Peebles, Ph.D. 323 Wrangler Dr, Fairfax, TX, USA

Syed M. Jalal, Ph.D. (c42) Cytogenetics Laboratory, Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic and Mayo Foundation, Rochester, MN, USA

Lauren Jenkins, Ph.D. (c2) Kaiser Permanente Medical Group, San Jose, CA, USA

Rhett P. Ketterling, M.D. Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic and Mayo Foundation, Rochester, MN, USA

Roger V. Lebo, Ph.D. Department of Pathology, Children’s Hospital Medical Center of Akron, Akron, OH, USA

James Lespinasse, M.D. (c10) Laboratoire de Cytogenetique, Centre Hospitalier, Chambery cedex, France
Brynn Levy, M.Sc (Med), Ph.D. Departments of Human Genetics and Pediatrics, Mount Sinai School of Medicine, New York, NY, USA

Thomas Lynch, M.D. Anzac House, Rockhampton, Old Australia

R. Ellen Magenis, M.D. Department of Molecular and Medical Genetics and Child Development and Rehabilitation Center, Oregon Health Sciences University, Portland, OR, USA

Jim Malone (c39) Akron Children’s Hospital, Akron, OH, USA

Patricia M. Miron, Ph.D. (c7, c8, c9, c33, c34, c35, c36) Brigham and Women’s Hospital, Boston, MA, USA

Susan Bennett Olson, Ph.D. Department of Molecular and Medical Genetics, Oregon Health Sciences University, Portland, OR, USA

Emelie H. Ongcapin, M.D. (c12) Department of Pathology, Saint Barnabas Medical Center, Livingston, NJ, USA

Shivanand R. Patil, Ph.D. Department of Pediatrics, University of Iowa College of Medicine, Iowa City, IA, USA

Jennifer Phy, M.D. Department of Obstetrics and Gynecology, TTHSC, Lubbock, TX, USA

Sayee Rajangam Department of Anatomy, St Johns Medical College, Bangalore, India

Birgitte Roland, M.D. (c30) Department of Histopathology, Foothill Hospital, University of Calgary, Calgary, Canada

Jacqueline Schoumans (c19, c20, c21, c22, c23, c24, c25, c26, c27, c28) Department of Medical Genetics, University Hospital Haukeland, Bergen, Norway

Cathy M. Tuck-Miller (c15) Department of Medical Genetics and Genetics-Birth Defects Center, University of Southern Alabama, Mobile, AL, USA

Gopalrao V.N. Velagaleti, Ph.D. Departments Pathology, University of Texas Health Sciences Center, San Antonil, TX, USA

Peter E. Warburton, Ph.D. Department of Human Genetics, Mount Sinai School of Medicine, New York, NY, USA

Sharon L. Wenger, Ph.D. (c3, c4) Department of Pathology, West Virginia University, Morgantown, USA

K. Yelavarthi, Ph.D. (c13, c14) Morgantown, WV, USA

Adriana Zamecnikova (c5, c6) Department of Genetics, National Cancer Institute, Klenova, Slavaki

J. Zunich, Ph.D. (c13, c14) Northwest Center for Medical Education, Gary, IN, USA

Numbers in parentheses with a “c” prefix represent contributions of figure material to the original Atlas of Human Chromosome Heteromorphisms. Some variants that were submitted were not included because of redundancy; those individuals or institutions are listed, but are not followed by “c” number(s). Figures that were submitted from published materials were not given “c” numbers, but are cited in the usual manner in the figure legend where used.