ATLANTIS STUDIES IN PROBABILITY AND STATISTICS

VOLUME 1

SERIES EDITOR: CHRIS P. TSOKOS
Atlantis Studies in Probability and Statistics

Series Editor:

Chris P. Tsokos, University of South Florida,
Tampa, USA

(ISSN: 1879-6893)

Aims and scope of the series

The Series ‘Atlantis Studies in Probability and Statistics’ publishes studies of high-quality throughout the areas of probability and statistics that have the potential to make a significant impact on the advancement in these fields. Emphasis is given to broad interdisciplinary areas at the following three levels:

(I) Advanced undergraduate textbooks, i.e., aimed at the 3rd and 4th years of undergraduate study, in probability, statistics, biostatistics, business statistics, engineering statistics, operations research, etc.;

(II) Graduate level books, and research monographs in the above areas, plus Bayesian, non-parametric, survival analysis, reliability analysis, etc.;

(III) Full Conference Proceedings, as well as Selected topics from Conference Proceedings, covering frontier areas of the field, together with invited monographs in special areas. All proposals submitted in this series will be reviewed by the Editor-in-Chief, in consultation with Editorial Board members and other expert reviewers.

For more information on this series and our other book series, please visit our website at:

www.atlantis-press.com/publications/books
Bayesian Theory and Methods with Applications

Vladimir P. Savchuk
National Metallurgical Academy of Ukraine
Gagarina Av. 4, 49600 Dnipropetrovsk, Ukraine

Chris P. Tsokos
University of South Florida
Department of Mathematics and Statistics
1202 Parrilla de Avila, Tampa, FL 33613, USA
Preface

This textbook aimed at the advanced undergraduate and graduate readership is devoted to a systematic account of the fundamentals of the Bayes theory of statistical estimation with applications to the analysis of engineering reliability. Lately, there has been a significant trend toward using the Bayesian approach to develop and analyze problems in different fields of our society. At the same time, the Bayes theory is characterized by an inner logical harmony and simplicity which makes it still more attractive for applied purposes. The application of the bayes theory and methods in the field of reliability gives us the opportunity to save money and time assigned for experiments owing to utilization of relevant prior information instead of the corresponding number of trials.

The subject matter of the book pursues the following double aim:

1. To give an account of the present state of the Bayes theory and methods with emphasis on application.
2. To demonstrate how we can use the Bayes approach for the evaluation of the reliability function in the calculations of reliability which, in practice, covers a great variety of the problems of statistical analysis of engineering reliability.

The distinguishing feature of this monograph is a close unity of fundamental investigation of the main principles of the Bayes theory with clear presentation of its practical applications. The rendering of the fundamentals of the Bayes methodology follows the classical works by Ramsey, Good, Savage, Jefferys, and De Groot, while its present state is represented by the results produced during the last 30 years by a number of scientists from the U.S.A., Canada and countries of Western Europe. The greater part of the monograph is comprised of the presentation of new and original results of the author, the most significant of which are Bayes quasi-parametric estimators, Bayes relative minimax estimators under the conditions of a partial prior information, and the estimators of the working capacity
with an additive error. The Bayes procedures suggested in the monograph are distinguished by a simple way of representation of prior information and use of censored samples that undoubtedly testify to their practical usefulness. The subject methodology presented in this monograph is illustrated with a great number of examples.

Chapter 1 of the monograph plays the role of an introduction and is, in fact, a brief excursion into the history of the Bayes approach. The general principles of the Bayes approach and hierarchical Bayes methodology are discussed in this chapter. Also included are the varieties of subjective probability constructions, as well as an application of the Bayes methodology in the reliability field.

Chapter 2 describes the components of the Bayes approach. In particular, forms of loss functions, choice of the prior probability distribution and the general procedure of reliability estimation are considered.

A systematic description of accepted estimation procedures is given in Chapter 3. The authors demonstrate the process of solving the problems of survival probability estimation from accelerated life tests.

Chapter 4 is devoted to non-parametric Bayes estimation which, in our opinion, is the front line of Bayes theory. Nonparametric Bayes estimators in which the Dirichlet processes are not used are discussed. The authors also consider the nonparametric bayes approach of quantile estimation for increasing failure rate.

A detailed presentation of a new method called “quasi-parametric” is given in Chapter 5. Bayes estimators of a reliability function for a restricted increasing failure rate distribution are studied.

Chapter 6 deals with the class of Bayes estimators of a reliability function under the conditions of partial prior information. The setting of the problem and its general solution that yields a new type of estimator are considered.

Chapter 7 is devoted to empirical Bayes estimators first suggested by Robins. The main results are described briefly. The authors present a new method based on the idea of quasi-parametrical estimation.

Chapters 8–10 are united by common contents that are based on a reliability estimation using functional models of working capacity.

The monograph is addressed (first and foremost) to practicing scientists, though it also deals with a number of theoretical problems. The monograph is a blend of thorough, mathematically-strict presentations of the subject matter and it is easily readable. The monograph can be a useful, authoritative and fundamental source of reference for training
statisticians, scientists and engineers in different fields.

The authors are grateful to several reviewers for their useful suggestions that we have included in the manuscripts: Dr. M. McWaters, Dr. Dennis Koutras, Dr. S. Sambandham, Dr. G. G. Haritonov, Dr. V. B. Chernjavskii, Dr. G. Aryal and Dr. R. Wooten.

Finally, we would like to thank Taysseer Sharaf for his kind assistance in the preparation of the manuscript. I would also like to thank Ms. Beverly DeVine-Hoffmeyer for her excellent assistance in typing this book.
Contents

Preface

1. General Questions of Bayes Theory

1.1 A brief excursus into the history of the Bayes approach 1
1.2 The Philosophy of the Bayes Approach .. 2
1.3 The General Principles of Bayes Methodology ... 4
 1.3.1 Possible interpretations of probability ... 4
 1.3.2 A union of prior information and empirical data ... 5
 1.3.3 Optimality of Bayes estimation rules .. 7
1.4 Subjective probabilities .. 7
1.5 The Hierarchical Bayes Methodology ... 13
1.6 Use of the Bayes methodology in reliability theory ... 14

2. The Accepted Bayes Method of Estimation

2.1 The components of the Bayes approach ... 17
2.2 Classical properties in reference to Bayes estimates .. 20
 2.2.1 Sufficiency .. 20
 2.2.2 Consistency ... 21
 2.2.3 Unbiasedness ... 24
 2.2.4 Effectiveness ... 25
2.3 Forms of loss functions ... 25
2.4 The choice of a prior distribution .. 29
 2.4.1 Conjugated prior distributions ... 29
 2.4.2 Jeffrey’s introduces prior distributions representing a “scantiness of knowledge” 32
 2.4.3 Choice of a prior distribution with the help of information criteria 35
2.5 The general procedure of reliability estimation and the varieties of relevant problems 41
2.5.1 Reliability estimation .. 41
2.5.2 Varieties of problems of Bayes estimation 44

3. The Methods of Parametric Bayes Estimation Based on Censored Samples 47
3.1 General description of the accepted estimation procedure 47
3.2 Likelihood function for Bayes procedures 52
3.3 Survival probability estimates for the constant failure rate 55
3.3.1 The case of uniform prior distribution 57
3.3.2 The case of a prior beta-distribution 61
3.4 Reliability estimates for the linear failure rate 63
3.5 Estimation of reliability for the Weibull distribution of a trouble-free time 67
3.6 The Bayes estimate of time to failure probability from accelerated life tests 72

4. Nonparametric Bayes Estimation 79
4.1 Nonparametric Bayes estimates, based on Dirichlet processes 79
4.1.1 Definition of the Dirichlet process 80
4.2 Some nonparametric estimators 83
4.2.1 Further development of the Ferguson theory 86
4.3 Nonparametric Bayes estimates in which Dirichlet processes are not used 100
4.3.1 Neutral to the right processes 100
4.4 The nonparametric Bayes approach of quantile estimation for increasing failure rate .. 115

5. Quasi-Parametric Bayes Estimates of the TTF Probability 123
5.1 Parametric approximations for a class of distributions with increasing failure rate .. 123
5.1.1 The case of a univariate prior distribution 124
5.1.2 Generalization of the case of a univariate prior distribution 127
5.1.3 The case of a multivariate prior distribution 130
5.2 Approximation of the posterior distribution of a time to failure probability for the simplest distribution function 134
5.2.1 The case of a univariate prior distribution 134
5.2.2 The generalized case of a univariate a priori distribution 137
5.2.3 The case of an m-variate prior distribution .. 140

5.3 Bayes estimates of a time to failure probability for the restricted increasing failure rate distributions .. 142

5.3.1 Bayes TTF estimates for the case $t \leq t_0$ 142

5.3.2 Bayes estimates of TTF for $t > t_0$.. 146

5.3.3 Investigation of the certainty of the derived estimates 151

5.4 Bayes estimates of a TTF probability for the restricted increasing failure rate distributions .. 152

5.4.1 Parametric approximation on the class of restricted failure rate distributions .. 153

5.4.2 Approximate estimates TTF of Bayes for the class $S_0(\delta)$ 155

5.4.3 Error approximation .. 159

6. Estimates of the TTF Probability under the Conditions of a Partial Prior Uncertainty 163

6.1 The setting of a problem and its general solution 163

6.1.1 The mathematical setting of the problem 164

6.1.2 Determination of a class of prior distributions H_{PF} 164

6.1.3 Construction of the class H_{PF} 165

6.1.4 Choice of a prior density from the class H_{PF}^{pq} 166

6.1.5 Solution of the minimax problem 167

6.2 A partial prior information for the Bernoulli trials 169

6.2.1 Formulation of the problem 169

6.2.2 Peculiarities of the problem solution 170

6.2.3 A scheme for evaluating TTF estimates 174

6.2.4 Numerical analysis for TTF estimates 174

6.2.5 A different way to calculate a lower confidence limit of TTF 175

6.2.6 Comparison with known results 179

6.3 Partial prior information for the constant failure rate 180

6.3.1 A problem of estimating TTF, $R(t)$, for an arbitrary time 181

6.3.2 A problem of estimating the failure rate 182

6.3.3 Solution of problem (6.43) 182

6.3.4 Estimation of the TTF with the help of the failure rate estimates 183

6.3.5 Numerical analysis for TTF estimates 184
6.4 Bayes estimates of the time to failures probability for the restricted increasing failure rate distributions 185
6.4.1 Setting of the problem 185
6.4.2 General solution of the problem 186
6.4.3 Estimate of the TTF for the exponential distribution of the time-to-failure ... 187
6.4.4 The TTF estimate for the binomial distribution 189

7. Empirical Bayes Estimates of Reliability 193
7.1 Setting of the problem and the state of the theory of empirical Bayes estimation 193
7.1.1 Setting of the problem of empirical Bayes estimates 194
7.1.2 Classification of methods 195
7.1.3 Parametric methods based on approximation of the Bayes decision rule .. 196
7.1.4 Parametric methods, based on approximation of a prior distribution ... 197
7.1.5 Nonparametric empirical Bayes methods 199
7.2 Empirical Bayes estimation of the survival probability for the most extended parametric distributions 200
7.2.1 General procedure for obtaining estimates 200
7.2.2 Binomial scheme ... 203
7.2.3 Exponential distribution 203
7.2.4 Distribution with a linearly-increasing failure rate 204
7.2.5 The Weibull distribution 206
7.3 Nonparametric empirical Bayes estimates of reliability under the condition of data accumulation 207
7.3.1 Description of the problem 207
7.3.2 Solution of the problem for form D data representation 209
7.3.3 Solution of the problem for the form of data representation 213
7.3.4 Comparative analysis of estimates 215
7.3.5 Investigation of the accuracy of TTF estimates 215

8. Theoretical Model for Engineering Reliability 219
8.1 Setting of the problem .. 219
8.1.1 Setting of the problem 220
Contents

8.1.2 The solution algorithm in case one 221
8.1.3 The algorithm of the problem in case two 222
8.2 Reliability function estimates for the known variance of a status variable . 223
8.3 General estimates of the reliability function for a one-dimensional model 226
 8.3.1 Formulation of the problem 226
 8.3.2 The simplified scheme of the solution 228
 8.3.3 The main calculation scheme 230
8.4 Examples of calculation of the reliability estimates 232
 8.4.1 Calculation of TTF estimates of a carrier construction 232
 8.4.2 Calculated case “loading—carrying capability” with unknown
correlation coefficient ... 236
8.5 The statistical design optimization based on the Bayes approach 240
 8.5.1 Formulation of the problem 241
 8.5.2 An example of solving the optimization problem 243

 9.1 Traditional and Bayes interpretations of the error of the working capacity
 model ... 247
 9.2 The problem of estimation of the additive error of the working capacity
 model attached to estimation of the reliability function 252
 9.3 The conditional estimates of the reliability function 254
 9.3.1 Calculation case of a generalized exponential error 254
 9.3.2 Calculation of the Gaussian error 255
 9.3.3 Conditional TTF estimates for a fixed time 256
 9.3.4 The problem of determining m_Z and σ_Z 258
 9.3.5 Conditional TTF estimates for variable time 258
 9.3.6 The method of determination of the numerical characteristics of
 m_Z, σ_Z and a_Z ... 263
 9.4 Bayes estimation of the reliability functions under the lack of experimen-
tal data .. 264
 9.4.1 General procedure of Bayes estimation 264
 9.4.2 TTF estimates for a fixed time 268
 9.4.3 TTF estimates during the time τ 270
 9.4.4 Bayes TTF estimates considering uncertainty of the initial data . 271
10. Statistical Reliability Analysis Posterior Bayes Estimates

10.1 The likelihood function for independent trials
- 10.1.1 A likelihood function from the results of research tests
- 10.1.2 A likelihood function from the results of functional tests

10.2 The posterior distribution of the error parameters of a theoretical working capacity model
- 10.2.1 The posterior distribution of the parameters of the error \(\varepsilon \) for functional tests
- 10.2.2 The posterior distribution of the parameters of the error \(\varepsilon \) by the set of results of research and functional tests
- 10.2.3 The discrete posterior TTF distribution

10.3 Bayes posterior estimates
- 10.3.1 The posterior estimates of the error of the theoretical working capacity model
- 10.3.2 TTF Estimates with fixed parameters
- 10.3.3 Investigation of certainty of the Bayes estimates
- 10.3.4 Bayes TTF estimates for undefined parameters

10.4 A procedure for controlling the operational capacity of a system
- 10.4.1 Setting of the problem
- 10.4.2 A problem solution in the general case
- 10.4.3 Calculating the case of a nonrandom admissible value
- 10.4.4 Setting of the problem
- 10.4.5 The case of Gaussian distributions
- 10.4.6 Numerical analysis of the obtained estimates

Bibliography