THE PHYSICS OF FLUIDS IN HIERARCHICAL POROUS MEDIA: ANGSTROMS TO MILES

Theory and Applications of Transport in Porous Media

Series Editor: Jacob Bear, Technion – Israel Institute of Technology, Haifa, Israel

Volume 10

The Physics of Fluids in Hierarchical Porous Media: Angstroms to Miles

by

John H. Cushman

Purdue University, West Lafayette, Indiana, U.S.A.

SPRINGER-SCIENCE+BUSINESS MEDIA, B.V.

A C.I.P. Catalogue record for this book is available from the Library of Congress

ISBN 978-90-481-4909-4 ISBN 978-94-015-8849-2 (eBook) DOI 10.1007/978-94-015-8849-2

Printed on acid-free paper

All Rights Reserved

© 1997 Springer Science+Business Media Dordrecht Originally published by Kluwer Academic Publishers in 1997 Softcover reprint of the hardcover 1st edition 1997 No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without written permission from the copyright owner.

This text is dedicated to Ruth and to the memory of Rachel

Table of Contents

I.	I	An In	troduction to Continuum Physics	1
	1.1	Introd	uction	1
	1.2 Deformation and Strain			1
		1.2.1	Preliminaries	1
		1.2.2	The Strain Tensors	5
		1.2.3	Area and Volume Changes	9
	1.3	Kinem	atics	10
		1.3.1	Preliminaries	10
		1.3.2	The Deformation Rate Tensors	11
		1.3.3	Rates of Change of Area and Volume	13
	1.4	Global	Balances Over Material Volumes and Local Balances	14
	1.5	Stress		14
	1.6	Balanc	e of Mass, Momentum, and Energy	18
	1.7	Therm	ostatics	20
		1.7.1	Entropy as a Measure of Randomness	20
		1.7.2	Equilibrium and Empirical Temperature	21
		1.7.3	Internal Energy and the First Law	22
		1.7.4	The Second Law and Thermodynamic Temperature	23
		1.7.5	Legendre Transforms	24
	1.8	Therm	odynamics	24
		1.8.1	Clausius-Duhem Inequality	25
		1.8.2	Mechanical Equilibrium	26
		1.8.3	Thermal Equilibrium	26
	1.9	Exploit	tation of the Entropy Inequality	26
		1.9.1	Homogeneous Elastic Solid (displacement-gradient,	
			entropy, representation)	27
		1.9.2	Homogeneous Elastic Solid With Small Deformation	
			(infinitesimal-strain, temperature representation)	28
		1.9.3	Homogeneous Elastic Solid with Small Deformation	
			(mixed stress-strain, temperature representation).	29
		1.9.4	Homogeneous Viscous Fluid (entropy representation)	30
		1.9.5	Homogeneous Viscous Fluid (temperature	
			representation)	31

TABLE OF CONTENTS

	1.10	Near Equilibrium Constitutive Theory (Linearization) 3				
	1.11	Measu	rement	33		
		1.11.1	Volume Averages	35		
		1.11.2	Sequential Filtering	38		
		1.11.3	Averaging (Filtering) Theorems	41		
	1.12	Mixtu	re Theory for Species in a Phase	42		
		1.12.1	Preliminaries	42		
		1.12.2	General Balances	44		
	1.13	Multis	cale Balance Laws	48		
		1.13.1	Background	48		
		1.13.2	Mesoscale Balance Laws for the Bulk Phase	51		
		1.13.3	Micro and Mesoscale Balance Laws for the Interface	52		
		1.13.4	Macroscopic Equations	52		
	1.14	Summ	ary	53		
тт	٨٣	Intr	aduction to Statistical Machanics with	•		
11.		1. 11101		1 ~ -		
	Ap	plicat	tions to Nonlocal Dispersion	57		
	2.1	Introd		57		
	2.2	Classic		57		
		2.2.1	Preliminaries	58		
	• •	2.2.2	Dynamic Variable and the Liouville Operator	59		
	2.3	Probat	oility and Compression of Phase Space	60		
		2.3.1	Compression	60		
		2.3.2	Propagation Operators	62		
	0.4	2.3.3	Thermodynamic Equilibrium	63		
	2.4	Some I	Properties of the Liouville and Propagation Operators,	<u></u>		
		and Li		63		
		2.4.1	Hermitivity of the Llouville Operator	63		
		2.4.2	Averages and Correlation Functions	64 66		
	0 5	2.4.3	Projection Operators	00		
	2.5	The M	ori-Zwanzig Theory of Time Correlation Functions .	67		
		2.5.1		67		
		2.5.2	Generalized Langevin Equations	67		
	2.6	Nonloc	cal Diffusion	69		
		2.6.1	The Setting	70		
		2.6.2	Wave Vector and Frequency Dependent Diffusion	71		
		2.6.3	Approximations	73		
		2.6.4	Fractal Brown Diffusion	74		
	2.7	Nonloc	cal Dispersion at Local Equilibrium	74		
		2.7.1	The Balance Law	75		
		2.7.2	Wave Vector Expansion	77		

TABLE OF CONTENTS

	2.7.3	Frequency Moment Expansion	79		
2.8	Memory Function Formalism for Nonequilibrium Time				
	Correlation Functions and Nonlocal Dispersion 8				
	2.8.1	Preliminaries	81		
	2.8.2	Fourier Mode Equation	82		
	2.8.3	Real-Space Equation	83		
	2.8.4	Wave-Vector Expansion	85		
	2.8.5	General Nonlocal Flux	87		
2.9	The K	irkwood Equations of Hydrodynamics	87		
	2.9.1	Preliminaries	87		
	2.9.2	Mass Balance	89		
	2.9.3	Momentum Balance	90		
	2.9.4	Stress Tensor	92		
	2.9.5	Molecular Interpretation of Stress	93		
	2.9.6	Conservation of Energy	95		
2.10	Equili	brium Quantum Probability Densities	96		
	2.10.1	Quantum Mechanical Prerequisites	97		
	2.10.2	Canonical Ensemble	98		
	2.10.3	Grand Canonical Ensemble	101		
	2.10.4	Isostress-Isostrain Ensembles	103		
2.11	The C	lassical Reduction of the Quantum Densities	107		
2.12	Summ	ary	108		
III. Si	ngle S	Species <i>LJ</i> -Fluids in Slit Micropores	111		
3.1	Introd	uction	111		
3.2	Slit-Po	ore Geometry and LJ-Potentials	111		
	3.2.1	The Slit Pore	112		
	3.2.2	Potential Energy	113		
3.3	Isostra	in Canonical, Isostrain-Isostress Canonical, Isostrain			
	Grand	Canonical, Isostress-Isostrain Grand Canonical MC			
	and Is	ostrain Microcanonical MD	114		
	3.3.1	Monte Carlo Averages	114		
.	3.3.2	Molecular Dynamics Averages	118		
3.4	Layere	d Density Profiles and the Oscillatory Normal Force			
	for a S	lit-Pore	119		
	3.4.1	Experimental Evidence	119		
	3.4.2	Density Profiles	119		
	3.4.3	Solvation Force (Normal Stress)	122		
3.5	Shear	Stresses in Structured Slit-Pores	122		
	3.5.1	Experimental Evidence	123		
	3.5.2	Computational Evidence in an Isostrain Grand Canonie	cal		
		Ensemble	124		

TABLE	OF	CON	TEN	TΓ	S
-------	----	-----	-----	----	---

	3.5.3	Computational Results in Isostress-Isostrain Canonical			
		and Grand Canonical Ensembles	127		
3.6	Self Di	iffusion: Fickian vs. Anomalous	131		
	3.6.1	Preliminaries	132		
	3.6.2	Gedankin Experiment	133		
	3.6.3	Nonlocal Diffusion Perpendicular to the wall	136		
	3.6.4	Classical Diffusion	141		
	3.6.5	Nonlocal Diffusion Parallel to Walls	146		
3.7	Interfa	cial Tension	154		
	3.7.1	Preliminaries	154		
	3.7.2	Tension Versus Width, Registry and Number of			
		Particles	154		
3.8	Comp	utational Hysteresis	161		
	3.8.1	Background	162		
	3.8.2	Hysteratic Adsorption Isotherms	162		
	3.8.3	Cusp Catastrophe	165		
	3.8.4	Fluctuations and Ergodicity	168		
3.9	Shear-	Strain Induced Second-Order Phase Transitions	169		
	3.9.1	Preliminaries	169		
	3.9.2	Heat Capacity, Compressibility and Expansivity	170		
	3.9.3	Numerical Results	171		
	3.9.4	Critical Strain	174		
3.10	Therm	odynamic Stability Under Shear	176		
	3.10.1	Thermodynamics	176		
	3.10.2	Numerical Results	178		
3.11	Summ	ary	184		
C'-		tion of Mone Compliants I Divide on I			
IV. 511	mula	tion of More Complicated Fluids and			
Mo	re C	omplicated Microporous Media 1	.87		
4.1	Introd	$uction \ldots \ldots$	187		
4.2	More (Complex Geometry and Potentials	187		
4.3	Dipola	r Fluids in Slit-Micropores	189		
4.4	Binary	Mixtures in Slit-Micropores	194		
	4.4.1	Cases	194		
	4.4.2	Numerical Results	195		
4.5	Transi	ently Coexisting Nanophases in Corrugated Pores	211		
	4.5.1	Preliminaries	211		
	4.5.2	Structure in a Corrugated Pore	212		
	4.5.3	Variation of Groove Width and Period of Corrugation	218		
4.6	4.6 Nanophase Coexistence and Sieving for Binary Mixtures in				
	Corrug	gated Pores	220		

	4.6.1	Preliminaries	221
	4.6.2	Cases Studied	221
	4.6.3	Numerical Results	222
4.7	Sumn	nary	233
v. N	Multis	scale Hybrid Mixture Theory (HMT	')
fo	r Swe	elling Porous Media	239
5.1	Intro	duction \ldots	239
5.2	Two-	Scale Theories With Volume Fraction	240
	5.2.1	Preliminaries	241
	5.2.2	Mass Balance	241
	5.2.3	Momentum Balance	244
	5.2.4	Energy Balance	246
	5.2.5	Thermodynamics	248
	5.2.6	Constitution	252
	5.2.7	General Relations	256
	5.2.8	Equilibrium Restrictions	257
	5.2.9	Linearization (Near-Equilibrium Theory)	259
5.3	Equil	ibrium and Nonequilibrium Swelling and Capillary	
	Press	ures	260
	5.3.1	Equilibrium Swelling Pressure	260
	5.3.2	Nonequilibrium Swelling and Capillary Pressures	262
5.4	Moist	ure Transport in Shrinking Systems During Drying	264
	5.4.1	Darcy's Law	264
	5.4.2	Mass Balance	265
	5.4.3	Cylindrical Symmetry	266
	5.4.4	Boundary and Initial Conditions	268
	5.4.5	Numerical Results and Comparison to Experiment .	270
5.5	The C	Chemical Potential and Fick's Law Revisited	273
	5.5.1	The Problem	274
	5.5.2	Balance Laws and Entropy Inequality	276
	5.5.3	Constitution	279
	5.5.4	General Nonequilibrium Results and Two Definitions for the N^{th} Chemical Potential	284
	5.5.5	Equilibrium Restrictions	288
	5.5.6	Near-Equilibrium Results	291
	5.5.7	Modified Entropy Inequality Using Lagrange	
		Multipliers	294
	5.5.8	Comparing the Chemical Potentials for Selected	
		Examples	296
5.6	Three	-Scale Swelling Systems Without Interfaces	301
	5.6.1	Preliminaries	301

	5.6.2	Field Equations and Restrictions	303
	5.6.3	Independent Variables and Closure	310
	5.6.4	Nonequilibrium Results	317
	5.6.5	Equilibrium Results	319
	5.6.6	Near Equilibrium Results	320
5.7	Three-	-Scale Swelling Systems With Interfaces	323
	5.7.1	Preliminaries	323
	5.7.2	Independent and Dependent Variables	323
	5.7.3	Nonequilibrium Results	327
	5.7.4	Equilibrium Results	328
	5.7.5	Linearization	330
	5.7.6	Some Comments	332
5.8	Summ	ary	336
VI. M	acros	scale Nonlocal Dispersion	339
6.1	Introd	uction	339
6.2	Euleri	an Models for Conservative Chemicals	340
	6.2.1	Mean Equation	340
	6.2.2	Spatial Moments	343
6.3	Euleri	an Transport With Deterministic Nonequilibrium	
	Sorpti	on	344
	6.3.1	Mean Equation	344
	6.3.2	Moments	346
6.4	Comp	arison of Eulerian to Lagrangian Expected Spatial	
	Mome	nts with Deterministic Linear Nonequilibrium	
	Sorpti	on	348
	6.4.1	Basic Formalism	348
	6.4.2	Spatial Moments	349
	6.4.3	Moment Comparison	350
6.5	Euleri	an Transport with Linear Nonequilibrium Sorption and	_
	Rando	$m K_d$	355
	6.5.1	Mean Equation	355
	6.5.2	Nonlocality	357
	6.5.3	Data Correlations	358
	6.5.4	Numerical Results	360
6.6	Locali	zation Errors	367
	6.6.1	Balance Laws	368
	6.6.2	Analytical Moments	370
	6.6.3	Numerical Comparisons	375
6.7	Euleri	an Transport With Linear Nonequilibrium Sorption	
	and R	andom K_f and K_b	380
	6.7.1	Mean Equation	380

	6.7.2	Data	381			
	6.7.3	Numerical Experiments	382			
6.8	Eulerian Models for Physical, Chemical, and Biological					
	Hetero	geneity	387			
	6.8.1	Mean Equation	387			
	6.8.2	Data	389			
	6.8.3	Numerical Experiments	390			
6.9	Higher	-Order Corrections to the Flow Velocity Covariance				
	Tensor	·	398			
	6.9.1	Analytical Covariances	398			
	6.9.2	Numerical Covariances	403			
6.10	On Hig	gher-Order Corrections to the Mean Dispersive Flux .	407			
	6.10.1	Preliminaries	407			
	6.10.2	Dispersive Fluxes	409			
	6.10.3	Spatial Moments with Second-Order Corrections	413			
6.11	Monte	Carlo Studies in Fractal Conductivity and Reactivity				
	Fields:	Comparison with Nonlocal Theory	416			
	6.11.1	Foreshadow	417			
	6.11.2	Fractal Conductivity Distribution	417			
	6.11.3	Generating Realizations and Correlation Functions	419			
	6.11.4	Numerical Solutions to Flow and Transport	421			
	6.11.5	Numerical Results for Conservative Tracers	424			
	6.11.6	Monte Carlo Results for Reactive Transport	429			
6.12	Monte	Carlo Studies in Exponential and Fractional				
	Brown	ian Conductivity Fields: Perturbation, Closure, and				
	Localiz	ation Errors	435			
	6.12.1	Model Formulation	435			
	6.12.2	Validity of the First-Order Solution to the Flow Proble	em			
		$(6.4.19) \dots \dots \dots \dots \dots \dots \dots \dots \dots $	435			
	6.12.3	Effect of the First-Order Flow Solution on Convolution	1-			
		Fickian Transport	437			
	6.12.4	Closure Issues	439			
	6.12.5	Flux Localization Errors	446			
6.13	Summa	ary	449			
6.14	Adden	dum	450			
т.	f		420			
ке	eieren	ICes	452			
Ind	lex		460			

Preface

Porous media are ubiquitous throughout nature and many modern technologies. Examples of natural porous media include tissues, cells, folded proteins, whole plants and animals, soils, aquifers, and reservoirs. Modern technologies involve pores and porous media in many different ways. For example, they are involved with gel electrophorisis, chromatography, the atomic force and scanning tunneling microscopes, the formation of composites, drug delivery substrates, protective clothing, insulation (ceramics and fiberglass), air filters, ion exchange columns, and etc. When viewed on an appropriate scale, almost anything can be thought of as being porous. For this reason, the scale of observation is critically important in theories of flow and deformation in porous media.

Because of their omnipresent nature, porous media are studied to one degree or another in almost all branches of science and engineering. And not surprisingly, this text is an outgrowth of a two-semester advanced graduate level course offered to applied mathematicians, physicists, chemists, engineers (chemical, civil, mechanical, and agricultural) and environmental and soil scientists at Purdue University. Its contents result from my attempt to develop a coherent and rational multiscale approach for studying porous media and fluids therein. While many of the problems studied are restrictive, the tools and techniques developed and used are generic, and as such are applicable to a much wider range of problems and topics than those presented. No attempt is made to survey the broad literature on porous media, rather the problems studied are based on the efforts of my group over approximately the last five years. The reader is assumed to have familiarity with mathematics through a first course in PDE's and an introduction to stochastic processes. Most requisite background material is contained within the text.

Chapters I and II provide many of the tools which are prerequisites for later chapters. Chapter I presents an elementary background in continuum physics for single phases (classical continuum mechanics), species within a phase (mixture theory), and mixtures of phases and species (hybrid mixture theory). Much of the early material in this chapter is condensed from Eringen [65]. Chapter II summarizes both classical equilibrium and nonequilibrium statistical mechanics. In addition, it introduces the reader to nonlocality and to the duality between continuum and statistical mechanical constructs.

Chapters III and IV focus on the anomalous behavior of fluids in microporous materials. A micropore can be defined as a pore with at least one characteristic dimension on the order of a few fluid molecular diameters. Consequently, the size of a micropore is very "small" if the fluid molecule

PREFACE

is small, but it can be rather "large" if the molecule is large. We focus on the former of these scenarios. Such micropores are commonly found in swelling colloids such as bentonite clays and polymers. Technologies involving micropores include atomic force microscopy (AFM) and scanning tunneling microscopy (STM). Fluid behavior in microporous media is incredibly rich and different than its bulk phase counterpart with which it may be in equilibrium. Using statistical mechanical tools it is illustrated how substantially these fluids differ from their bulk counterparts.

Chapter V deals with the propagation of information from the "microscale" to the "mesoscale" and the mesoscale to the "macroscale" for systems with colloids. Here, in the case of swelling clays for example, the microscale is defined as the scale of the individual clay platelet or the fluid solvating the platelet (vicinal fluid). The mesoscale is a homogenization of the platelets and vicinal water to form a clay particle (mixture of platelets and vicinal water viewed as a particle). The macroscale is a homogenization of the particles with bulk water. Applications to the drying of shrinking biogels and the consolidation of clay soils are presented.

Chapter VI deals with natural porous media, on scales of meters to miles, where there may be no discrete spatial or temporal scale of motion. The main tool used here is perturbation theory applied to stochastic PDE's. The practical problem studied is the evolution of dissolved contaminants in natural geologic media. The perturbation results are compared to extensive Monte Carlo simulations over random fields.

As this text is a compilation of results obtained within my group, specific acknowledgement is due a large number of students and colleagues. The nonlocal results and Monte Carlo results of Chapters II and VI were obtained with the help of Drs. T. R. Ginn, F.-W. Deng, B. X. Hu, and A. Hassan. The microporous results are largely the result of cooperative efforts with M. Schoen, D. J. Diestler, J. E. Curry, and K. K. Han. The mixture theoretic results owe a large part of their existence to S. Achanta, L. S. Bennethum, and M. A. Murad. In addition to the above mentioned co-workers, I would also like to thank P. F. Low and J. Douglas, Jr., for constant support and encouragement, and to D. Kirkham for introducing me to the fascinating world of porous media. I would like to thank Judy Stout for her incredibly efficient wordprocessing, Odila Stevenson for her hospitality and kindness during my tenure in Rio de Janeiro where the heart of this manuscript was prepared, and Bill Stroud for all the efforts it took to scan and edit the figures. Finally, I would also like to acknowledge financial support for my sabbatical as provided by P. J. Paes Leme, of the Instituto Politécnico, Universidade do Estado do Rio de Janeiro, through CNPq.

The work represented herein has been supported for many years by the Department of Energy's Office of Health and Environmental Research and the Army Research Office's Terrestrial Sciences Program. In addition to these long term supporters, more recent support has been provided by the U.S. Army Corps of Engineers Waterways Experiment Station, and the National Science Foundation.

The author wishes to acknowledge the International Journal of Engineering Science, Journal of Molecular Physics, Journal of Chemical Physics, Transport in Porous Media, Nature, Science, Water Resources Research, Chemical Engineering Communications, Advances in Water Resources, and Physical Review E, for permission to reprint portions of the articles listed in the following references: 2, 4, 12, 32, 33, 34, 35, 37, 41, 40, 44, 45, 57, 58, 65, 75, 76, 77, 79, 85, 86, 87, 130, 134, 135, 136, 139, 141, 143.