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Preface 

Porous media are ubiquitous throughout nature and many modern tech
nologies. Examples of natural porous media include tissues, cells, folded 
proteins, whole plants and animals, soils, aquifers, and reservoirs. Modern 
technologies involve pores and porous media in many different ways. For 
example, they are involved with gel electrophorisis, chromatography, the 
atomic force and scanning tunneling microscopes, the formation of com
posites, drug delivery substrates, protective clothing, insulation (ceramics 
and fiberglass), air filters, ion exchange columns, and etc. When viewed on 
an appropriate scale, almost anything can be thought of as being porous. 
For this reason, the scale of observation is critically important in theories 
of flow and deformation in porous media. 

Because of their omnipresent nature, porous media are studied to one 
degree or another in almost all branches of science and engineering. And not 
surprisingly, this text is an outgrowth of a two-semester advanced graduate 
level course offered to applied mathematicians, physicists, chemists, engi
neers (chemical, civil, mechanical, and agricultural) and environmental and 
soil scientists at Purdue University. Its contents result from my attempt to 
develop a coherent and rational multiscale approach for studying porous 
media and fluids therein. While many of the problems studied are restrictive, 
the tools and techniques developed and used are generic, and as such 
are applicable to a much wider range of problems and topics than those 
presented. No attempt is made to survey the broad literature on porous 
media, rather the problems studied are based on the efforts of my group over 
approximately the last five years. The reader is assumed to have familiarity 
with mathematics through a first course in PDE's and an introduction 
to stochastic processes. Most requisite background material is contained 
within the text. 

Chapters I and II provide many of the tools which are prerequisites for 
later chapters. Chapter I presents an elementary background in continuum 
physics for single phases (classical continuum mechanics), species within 
a phase (mixture theory), and mixtures of phases and species (hybrid 
mixture theory). Much of the early material in this chapter is condensed 
from Eringen [65]. Chapter II summarizes both classical equilibrium and 
nonequilibrium statistical mechanics. In addition, it introduces the reader 
to nonlocality and to the duality between continuum and statistical mech
anical constructs. 

Chapters III and IV focus on the anomalous behavior of fluids in micro
porous materials. A micropore can be defined as a pore with at least one 
characteristic dimension on the order of a few fluid molecular diameters. 
Consequently, the size of a micropore is very "small" if the fluid molecule 
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is small, but it can be rather "large" if the molecule is large. We focus 
on the former of these scenarios. Such micropores are commonly found 
in swelling colloids such as bentonite clays and polymers. Technologies 
involving micropores include atomic force microscopy (AFM) and scanning 
tunneling microscopy (STM). Fluid behavior in microporous media is in
credibly rich and different than its bulk phase counterpart with which it 
may be in equilibrium. Using statistical mechanical tools it is illustrated 
how substantially these fluids differ from their bulk counterparts. 

Chapter V deals with the propagation of information from the "micro
scale" to the "mesoscale" and the mesoscale to the "macroscale" for systems 
with colloids. Here, in the case of swelling clays for example, the microscale 
is defined as the scale of the individual clay platelet or the fluid solvating the 
platelet (vicinal fluid). The mesoscale is a homogenization of the platelets 
and vicinal water to form a clay particle (mixture of platelets and vicinal 
water viewed as a particle). The macroscale is a homogenization of the 
particles with bulk water. Applications to the drying of shrinking biogels 
and the consolidation of clay soils are presented. 

Chapter VI deals with natural porous media, on scales of meters to 
miles, where there may be no discrete spatial or temporal scale of motion. 
The main tool used here is perturbation theory applied to stochastic PDE's. 
The practical problem studied is the evolution of dissolved contaminants in 
natural geologic media. The perturbation results are compared to extensive 
Monte Carlo simulations over random fields. 



Acknowledgements 

As this text is a compilation of results obtained within my group, 
specific acknowledgement is due a large number of students and colleagues. 
The nonlocal results and Monte Carlo results of Chapters II and VI were 
obtained with the help of Drs. T. R. Ginn, F.-W. Deng, B. X. Hu, and 
A. Hassan. The microporous results are largely the result of cooperative 
efforts with M. Schoen, D. J. Diestler, J. E. Curry, and K. K. Han. The 
mixture theoretic results owe a large part of their existence to S. Achanta, 
L. S. Bennethum, and M. A. Murad. In addition to the above mentioned 
co-workers, I would also like to thank P. F. Low and J. Douglas, Jr., for 
constant support and encouragement, and to D. Kirkham for introducing 
me to the fascinating world of porous media. I would like to thank Judy 
Stout for her incredibly efficient wordprocessing, Odila Stevenson for her 
hospitality and kindness during my tenure in Rio de Janeiro where the 
heart of this manuscript was prepared, and Bill Stroud for all the efforts it 
took to scan and edit the figures. Finally, I would also like to acknowledge 
financial support for my sabbatical as provided by P. J. Paes Leme, of the 
Instituto Politecnico, Universidade do Estado do Rio de Janeiro, through 
CNPq. 

The work represented herein has been supported for many years by the 
Department of Energy's Office of Health and Environmental Research and 
the Army Research Office's Terrestrial Sciences Program. In addition to 
these long term supporters, more recent support has been provided by the 
U.S. Army Corps of Engineers Waterways Experiment Station, and the 
National Science Foundation. 

The author wishes to acknowledge the International Journal of Engineer
ing Science, Journal of Molecular Physics, Journal of Chemical Physics, 
Transport in Porous Media, Nature, Science, Water Resources Research, 
Chemical Engineering Communications, Advances in Water Resources, and 
Physical Review E, for permission to reprint portions of the articles listed 
in the following references: 2, 4, 12, 32, 33, 34, 35, 37, 41, 40, 44, 45, 57, 
58, 65, 75, 76, 77, 79, 85, 86, 87, 130, 134, 135, 136, 139, 141, 143. 

xvii 


