PLANT-SOIL INTERACTIONS AT LOW pH
Developments in Plant and Soil Sciences

VOLUME 45

The titles published in this series are listed at the end of this volume.
Plant-Soil Interactions at Low pH

Edited by
R. J. WRIGHT
V. C. BALIGAR
R. P. MURRMANN

United States Department of Agriculture
Agricultural Research Service
Appalachian Soil and
Water Conservation Research Laboratory
Beckley, West Virginia, USA

Chapters indicated with an asterisk in the table of contents were first published in Plant and Soil, Volume 134 (1991)

Springer-Science+Business Media, B.V.
Contents

Organizing Committee and Assistants; Keynote Speakers and Session Moderators
Assistance or financial support; International Steering Committee
Preface

Section 1: Chemistry of acid soils

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>G.P. Gillman, The chemical properties of acid soils with emphasis on soils of the humid tropics</td>
<td>3</td>
</tr>
<tr>
<td>M.G. Johnson and M.B. McBride, Solubility of aluminium and silicon in acidified spodosols: Evidence for soluble aluminosilicate</td>
<td>15</td>
</tr>
<tr>
<td>S. Xu, J.B. Harsh and J.S. Boyle, Solid phase control of aluminium activity in an artificial plant growth medium containing hydroxy-Al-montmorillonite</td>
<td>25</td>
</tr>
<tr>
<td>R.J. Bartlett, W.S. Harper and J. Rankin, Predicting toxicity of reactive “solution” aluminium using kinetic speciation</td>
<td>35</td>
</tr>
<tr>
<td>R. Naidu, R.J. Haynes, J.S. Gawander, R.J. Morrison and R.W. Fitzpatrick, Chemical and minerological properties and soil solution composition of acid soils from the South Pacific Islands</td>
<td>43</td>
</tr>
<tr>
<td>I. Öborn, Some effects of chemical weathering in three cultivated acid sulfate soils in Sweden</td>
<td>55</td>
</tr>
<tr>
<td>T. Ishiwata, Y. Okita and M. Saito, Fossil acid sulfate soils in Hokkaido, Northern Japan</td>
<td>65</td>
</tr>
<tr>
<td>M. Saigusa, N. Matsuyama, T. Honna and T. Abe, Chemistry and fertility of acid andisols with special reference to subsoil acidity</td>
<td>73</td>
</tr>
<tr>
<td>D.S. Ross, R.J. Bartlett and F.R. Magdoff, Exchangeable cations and the pH-independent distribution of cation exchange capacities in Spodosols of a forested watershed</td>
<td>81</td>
</tr>
<tr>
<td>A.K. Alva, M.E. Sumner and W.P. Miller, Salt absorption in gypsum amended acid soils</td>
<td>93</td>
</tr>
<tr>
<td>R.W. Blanchar and M.D. Frazier, Soil model of iron phosphate solubility</td>
<td>99</td>
</tr>
<tr>
<td>T.R. Yu, Characteristics of soil acidity of paddy soils in relation to rice growth</td>
<td>107</td>
</tr>
<tr>
<td>S.L. Worthington and A. Evans, Jr, Zinc fractionation in a Cecil soil as influenced by organic acid treatments</td>
<td>113</td>
</tr>
<tr>
<td>E.C. Krug, Geographic relationships between soil and water acidity, soil-forming factors, and acid rain</td>
<td>123</td>
</tr>
<tr>
<td>M. Nyborg, E.D. Solberg, S.S. Malhi, S. Takyi, P. Yeung and M. Chaudhry, Deposition of anthropogenic sulphur dioxide on soils and resulting soil acidification</td>
<td>147</td>
</tr>
</tbody>
</table>

Section 2: Fertility of acid soils

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. van Raij, Fertility of acid soils</td>
<td>159</td>
</tr>
<tr>
<td>* N.S. Bolan, M.J. Hedley and R.E. White, Processes of soil acidification during nitrogen cycling with emphasis on legume based pastures</td>
<td>169</td>
</tr>
</tbody>
</table>
A.J. Gijsman and M. van Noordwijk, Critical ammonium: nitrate uptake ratios for Douglas-fir determining rhizosphere pH and tree mortality 181
F.S. Gilliam, Ecosystem-level significance of acid forest soils 187
* R.L. Fox, N.V. Hue, R.C. Jones and R.S. Yost, Plant-soil interactions associated with acid weathered soils 197
* M.J. McLaughlin and T.R. James, Effect of phosphorus supply to the surface roots of wheat on root extension and rhizosphere chemistry in an acidic subsoil 205
* J.J. Maddox and J.M. Soileau, Effects of phosphate fertilization, lime amendments, and inoculation with VA-mycorrhizal fungi on soybeans in an acid soil 215
* K. Hairiah, M. van Noordwijk and S. Setijono, Tolerance to acid soil conditions of the velvet beans Mucuna pruriens var. utilis and M. deeringiana. I. Root development 227
E.F. Caires and C.A. Rosolem, Root growth of peanut cultivars and soil acidity 239
V.C. Baligar, R.J. Wright, K.D. Ritchey, J.L. Ahlrichs and B.K. Woolum, Soil and soil solution property effects on root growth of aluminum tolerant and intolerant wheat cultivars 245
J.S. Bailey, R.J. Stevens and D.J. Kilpatrick, A rapid method for predicting the lime requirement of acidic temperate soils with widely varying organic matter contents 253
W.B. Bryan and K.C. Elliott, Effects of sample depth, and of lime and phosphorus applications on soil test levels in pasture soils 263
R.J. Haynes and R. Naidu, Effects of lime additions on the availability of phosphorus and sulphur in some temperate and tropical acid soils 267
* R.J. Wright, V.C. Baligar, D.P. Belesky and J.D. Snuffer, The effect of phosphate rock dissolution on soil chemical properties and wheat seedling root elongation 281
* R.A. Carran. Calcium magnesium imbalance in clovers: A cause of negative yield response to liming 291
A.C. Edwards, Soil acidity and its interactions with phosphorus availability for a range of different crop types 299
R. Siddaramappa, N.R. Jagadish and C.A. Srinivasamurthy, Efficiency of rock phosphate as phosphatic fertilizer to rice in acid soil of Karnataka, India 307
J.A. Takow, M.D. Doumbia and L.R. Hossner, Acid soil profiles of the semiarid and subhumid tropics in Central and West Africa 313
C.A. Rosolem, H.F.M. Pereira, M.A. Bessa and P.G. Amaral, Nitrogen in soil and cotton growth as affected by liming and nitrogen fertilizer 321
J.A. Quaggio, V.J. Ramos, P.R. Furlani and M.L.C. Carelli, Liming and molybdenum effects on nitrogen uptake and grain yield of corn 327
R.S. Kulkarni, M. Mahadevappa, A.V. Bulbule and R. Siddaramappa, Studies on nutrition of rice cultivars under simulated acidic conditions with particular reference to iron 333
J.G. Davis-Carter, M.B. Parker and T.P. Gaines, Interaction of soil zinc, calcium, and pH with zinc toxicity in peanuts 339
S.C. Kotur, Effect of boron, lime and their residue on yield of cauliflower, leaf composition and soil properties 349
A.J. Farwell, M.P.W. Farina and P. Channon, Soil acidity effects on premature germination in immature maize grain 355

Section 3: Management of acid soils

K.R. Helyar, The management of acid soils 365
P. Parkpian, P. Pongsakul and P. Sangtong, Characteristics of acid soils in Thailand: A Review 397
D.G. Boyer, R.J. Wright, C.M. Feldhake and D.P. Bligh, Soil spatial variability and steep pasture management considerations in an acid soil environment

* M.P. Gichuru, Residual effects of natural bush Cajanus cajan and Tephrosia candida on the productivity of an acid soil in southeastern Nigeria

* M. van Noordwijk, Widianto, M. Heinen and K. Hairiah, Old tree root channels in acid soils in the humid tropics: Important for crop root penetration, water infiltration and nitrogen management

* P.R. Warman, Effect of incorporated green manure crops on subsequent oat production in an acid, infertile silty loam

D.R. Coventry, The injection of slurries of lime, associated with deep tillage, to increase wheat production on soils with subsoil acidity

* G. Kirchhof, J. Blackwell and R.E. Smart, Growth of vineyard roots into segmentally ameliorated acidic subsoils

R.W. Cumming, Long-term effects of lime in extensive pasture areas of Australia

* M.P.W. Farina and P. Channon, A field comparison of lime requirement indices for maize

C.P. Mamaril, D. Estrella and E.E. Lapitan, Phosphorus-lime interaction in a strongly acid upland soil grown to rice in Cavinti, Philippines

J.E. Rechcigl, R.B. Reneau, Jr. and D.E. Starner, Alfalfa yields and quality as influenced by subsurface application of phosphorus, potassium and limestone

* J. Shamshuddin, I. Che Fauziah and H.A.H. Sharifuddin, Effects of limestone and gypsum application to a Malaysian ultisol on soil solution composition and yields of maize and groundnut

G. Keerthisinghe, M.J. McLaughlin and J.R. Freney, Use of gypsum, phosphogypsum and fluoride to ameliorate subsurface acidity in a pasture soil

N.K. Fageria, R.J. Wright, V.C. Baligar and J.R.P. Carvalho, Response of upland rice and common bean to liming on an oxisol

T.J.V. Hodge and P.P. Michelsen, The effect of lime and vegetation management on non-wetting behaviour of an acid siliceous sand

K.M. Krishnappa, S. Panchaksharaiah, K.M.S. Sharma and T.S. Vageesh, Efficiency of rock phosphate in rice-groundnut cropping system in acid soils of coastal Karnataka, India

* N.K. Fageria, V.C. Baligar and R.J. Wright, Influence of phosphate rock sources and rates on rice and common bean production in an oxisol

S.S. Malhi, M. Nyborg, J.T. Harapiak and N.A. Flore, Acidification of soil in Alberta by nitrogen fertilizers applied to bromegrass

M. Nyborg and S.S. Malhi, Acidification of forest soil by elemental sulphur dust

Section 4: Microbial relations in acid soils

A.R. Glenn and M.J. Dilworth, Soil acidity and the microbial population: Survival and growth of bacteria in low pH

* S.R. Aarons and P.H. Graham, Response of Rhizobium leguminosarum bv. phaseoli to acidity

J.G. Howieson, M.A. Ewing, C.W. Thorn and C.K. Revell, Increased yield in annual species of Medicago grown in acidic soil in response to inoculation with acid tolerant Rhizobium meliloti

P.G. Hartel and J.H. Bouton, Rhizobium meliloti inoculation of alfalfa selected for tolerance to acid aluminum-rich soils

S.F. Wright and S.K. Zeto, Effects of pH and Al$^{3+}$ activity on survival of Rhizobium leguminosarum bv. trifolii in a simple solution and on nodulation of red clover in acid soils

Z.H. Shamsuddin, J.F. Loneragan and M.J. Dilworth, Tolerance of winged bean (Psophocarpus tetragonolobus) and its symbiotic system to soil acidity
R. Rai, Effects of soil acidity factors on interaction of chickpea (*Cicer arietinum* L.) genotypes and *Rhizobium* strains: Symbiotic N-fixation, grain quality and grain yield in acid soils 619

T.J.V. Hodge, The effect of lime, nitrogen and *Rhizobium* inoculation on dry top production, nutrient concentration and nodulation of subterranean clover grown on an acid siliceous sand 633

H.H. Schomberg and R.W. Weaver, Growth and N₂ fixation response of arrowleaf clover to manganese and pH in solution culture 641

G.R. Cline, Z. Ngezoh Senwo and K. Kaul, Symbiotic soybean in acidified soil 649

D.P. Belesky, J.M. Fedders and R.J. Wright, Coating birdsfoot trefoil (*Lotus corniculatus* L.) seed with CaCO₃ and rock phosphate: Early seedling development in controlled environments 655

R. Rai, Isolation, characterization and associative N-fixation of acid-tolerant *Azospirillum brasilense* strains associated with *Eleusine coracana* in low pH-Al-rich acid soil 663

V.P.S. Chahal and P.P.K. Chahal, Interaction studies between *Rhizobium leguminosarum* and *Meloidogyne incognita* on pea (*Pisum sativum* L.) grown under different concentrations of molybdenum 673

V.P.S. Chahal and P.P.K. Chahal, Control of *Meloidogyne incognita* and *Bacillus thuringiensis* 677

Section 5: Physiology/Biochemistry of acid stress tolerance in plants

* H. Marschner, Mechanisms of adaptation of plants to acid soils 683
* R.J. Bennet and C.M. Breen, The aluminium signal: New dimensions to mechanisms of aluminium tolerance 703
* T.B. Kinraide, Identity of the rhizotoxic aluminium species 717
 M.J. Goss, M.J.G.P.R. Carvalho and E.A. Kirkby, Predicting toxic concentrations of manganese in acid soils 729
 W.J. Horst, C.J. Asher, J. Cakmak, P. Szulkiewicz and A.H. Wissemeyer, Short term responses of soybean roots to aluminium 733
 D.L. Godbold, Aluminium decreases root growth and calcium and magnesium uptake in *Picea abies* seedlings 747
 W.G. Keltjens and W.J. Dijkstra, The role of magnesium and calcium in alleviating aluminium toxicity in wheat plants 763
 L.V. Kochian and J.E. Shaff, Investigating the relationship between aluminium toxicity, root growth, and root-generated ion currents 769
 V. Puthota, R. Cruz-Ortega, J. Johnson and J. Ownby, An ultrastructural study of the inhibition of mucilage secretion in the wheat root cap by aluminium 779
 T. Wagatsuma, T. Nakashima and K. Tawaraya, Identification of aluminium-tolerant protoplasts in the original root protoplast population from several plant species differing in aluminium tolerance 789
 S. Amancio, A. Lopez, H. Santos, M.J. Rodrigues and A. Teixeira, Behaviour of inbred and hybrid maize lines in the presence of aluminium as evaluated by some physiological and biochemical parameters 795
* L. Galvez and R.B. Clark, Nitrate and ammonium uptake and solution pH changes for Al-tolerant and Al-sensitive sorghum (*Sorghum bicolor*) genotypes grown with and without aluminium 805
 L. Galvez and R.B. Clark, Effects of silicon on growth and mineral composition of sorghum (*Sorghum bicolor*) grown with toxic levels of aluminium 815
 H. Matsumoto, Biochemical mechanism of the toxicity of aluminium and the sequestration of aluminium in plant cells 825
 A. Haug and B. Shi, Biochemical basis of aluminium tolerance in plant cells 839
Section 6: Identification of acid tolerant plants

R.H. Howeler, Identifying plants adaptable to low pH conditions 885
D.C. Edmeades, D.M. Wheeler and R.A. Christie, The effects of Aluminium and pH on the growth of a range of temperate grass species and cultivars 913
A.D. Mackay, J.R. Caradus and S. Wewala, Aluminium tolerance of forage species 925
D.P. Belesky, J.M. Fedders and R.J. Wright, Short-term bioassay of Lotus corniculatus soil acidity tolerance 931
K.D. Ritchey, Evaluating sweet potato tolerance to aluminium toxicity: Comparison of rapid test method and field results 939
J.L. Ahlrichs, R.R. Duncan, G. Ejeta, P.R. Hill, V.C. Baligar, R.J. Wright and W.W. Hanna, Pearl millet and sorghum tolerance to aluminium in acid soil 947
P.R. Furlani, J.A. Quaggio and P.B. Gallo, Differential responses of sorghum to aluminium in nutrient solution and acid soil 953
M. Mahadevappa, A.V. Bulbule, R. Siddaramappa and R.S. Kulkarni, Field screening of rice cultivars for growth, yield and nutrient uptake in acidic soil 959
R.R. Coltman and W.H. Kuo, Screening for low-phosphorus tolerance among tomato strains 967
P.C. Kerridge, Adaptation of shrub legumes to acid soils 977
W.L. Pan, R.A. Black, J.B. Harsh, J.H. Bassman and J.S. Boyle, Morphology, root conductivity, and mineral accumulation of Northwest U.S. tree species in response to acid deposition in artificial soil 989
B. Borkowska, Experimental system for investigations of aluminium toxicity in fruit trees 999

Section 7: Genetics/Breeding of acid tolerant plants

A. Aniol, Genetics of acid tolerant plants 1007
S. Rajaram, M.M. Kohli and J. Lopez-Cesati, Breeding for tolerance to aluminium toxicity in wheat 1019
J.R. Caradus, A.D. Mackay and S. Wewala, Selection for tolerance and susceptibility to aluminium within Trifolium repens L. 1029
R.R. Duncan, R.E. Wilkinson, L.M. Shuman and E.L. Ramseur, Acid soil tolerance mechanisms for juvenile stage sorghum (Sorghum bicolor) 1037
J.G. Foster, B.A. Coulombe, S.W. van Scoyoc and R.E. Veilleux, Intercrossing methods, mutagenesis treatments, and tissue culture techniques for expanding the genetic diversity of flatpea, Lathyrus sylvestris L. 1047
L. Bona, J. Matuz and L. Purnhauser, Aluminium tolerance of Triticum aestivum L. populations related to plant-induced pH changes of nutrient solution 1057
S.J. Picton, K.D. Richards and R.C. Gardner, Protein profiles in roottips of two wheat (Triticum aestivum L.) cultivars with differential tolerance to aluminium 1063
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. Delhaize, T.J.V. Higgins and P.J. Randall, Aluminium tolerance in wheat: Analysis of polypeptides in the root apices of tolerant and sensitive genotypes</td>
<td>1071</td>
</tr>
<tr>
<td>C.I. Flores, L.M. Gourley, J.F. Pedersen and R.B. Clark, Inheritance of acid-soil tolerance in sorghum (Sorghum bicolor) grown on an ultisol</td>
<td>1081</td>
</tr>
<tr>
<td>C.I. Flores, R.B. Clark, J.F. Pedersen and L.M. Gourley, Leaf mineral element concentrations in sorghum (Sorghum bicolor) hybrids and their parents grown at varied aluminium saturations on an ultisol</td>
<td>1095</td>
</tr>
</tbody>
</table>
Second International Symposium on Plant-Soil Interactions at Low pH

Organizing Committee

R. Paul Murrmann – Chairman
V.C. Baligar – Program
Robert J. Wright – Publication
Thomas E. Staley – Entertainment
H. Doug Perry and Kelley Sponaugle – Tour
Joyce G. Foster – Accompanying Individuals Program
Walter M. Winant – Transportation
James M. Fedders – Presentations
Susan Boyer – Graphics/Photography
Judy Murrmann – Administrative
Doris Fuller – Secretarial
Beverly Colvin – Functions

Organizing Committee Assistants

Bob Arnold
Bryan Arthur
John Ball
Dave Belesky
J.D. Bennett
David Bligh
Elizabeth Bligh
Les Bourinot
Doug Boyer
Danny Carter
Cindy Caldwell
John Carey
Jerry Carter
John Casto
Bernard Chang
Elsa Cook
Ronda Cramer
Ford Denison
John Elkins
Jeff Ellison
Jennifer Elmore
Antoinette Erickson
Charlie Feldhake
Louise Foster
John Fuller
Mary Lou Haley
Barry Harter
Gary Lambert
Nina Lambert
Ernie Lawrence
Dennis Layne
Debbie Lehman
Dwayne Lehman

Keynote Speakers and Session Moderators

Andrzej Aniol, Poland
Robin J. Bennet, Republic of South Africa
Keith G. Briggs, Canada
Michael J. Dilworth, Australia
Charles D. Foy, United States of America
Gavin P. Gillman, Cameroon
Alfred Haug, United States of America
Keith R. Helyar, Australia
Reinhardt H. Howeler, Thailand
Eugene J. Kamprath, United States of America
Horst Marschner, Federal Republic of Germany
Hideaki Matsumoto, Japan
Donald N. Munns, United States of America
Sanjaya Rajaram, Mexico
Pedro A. Sanchez, United States of America
Malcolm E. Summer, United States of America
Greg J. Taylor, Canada
Bernardo van Raij, Brazil
Lucian W. Zelazny, United States of America
Second International Symposium on Plant-Soil Interactions at Low pH

Assistance or financial support by the following institutions and organizations is gratefully acknowledged.

United States Department of Agriculture
 – Agricultural Research Service
 – Office of International Cooperation and Development
 – Soil Conservation Service

United States Department of Interior
 – National Park Service

State of West Virginia
 – Pipestem Resort State Park
 – Department of Natural Resources
 – Department of Commerce

Beckley National Bank
Quota Club of Beckley
Central Printing Company
Sovereign World Travel, Ltd.
Lilly’s Crown Jewelers
Appalachian Artists/Craftsmen
Pentek Scientific
Texasgulf, Inc.

International Steering Committee Plant-Soil Interactions at Low pH (as of 1 August 1990)

Chairman: R. Paul Murrmann, United States of America

Members: Bryon W. Bache, United Kingdom
 Keith G. Briggs, Canada
 Ronny R. Duncan, United States of America
 Les J. Evans, Canada
 Nand K. Fageria, Brazil
 Alfred Haug, United States of America
 Willem G. Keltjens, The Netherlands
 Gerry S.P. Ritchie, Australia
 Pedro A. Sanchez, United States of America
 Malcolm E. Sumner, United States of America
 Greg J. Taylor, Canada
 Tadao Wagatsuma, Japan
Preface

Soil acidity is a major limitation to crop production in many parts of the world. Plant growth inhibition results from a combination of factors, including aluminum, manganese, and hydrogen ion toxicities and deficiencies of essential elements, particularly calcium, magnesium, phosphorus, and molybdenum. Agricultural management practices and acid precipitation have increased acid inputs into the ecosystem and heightened concern about soil acidity problems. While application of lime has proved to be effective in ameliorating surface soil acidity in many areas, significant soil acidity problems still exist. Scientists from Alberta, Canada, recognized the need to provide a forum for researchers from different disciplines to exchange information and ideas on solving problems of plant growth in acid soils. As a result of their efforts, the First International Symposium on Plant-Soil Interactions at Low pH was held at Grande Prairie, Alberta, Canada, in July 1987.

In many acid soil areas, liming materials are not readily available, the cost may be prohibitive, or subsoil acidity cannot be corrected by surface application of lime. New management approaches involving both the plant and the soil are needed in these situations. Progress has been made in the selection and breeding of acid-tolerant plants. However, continued progress will be limited by our lack of understanding of the physiological and biochemical basis of differential acidity tolerance among plants. Soil test methods are needed to determine where toxicities will limit plant growth and to estimate the amount of lime or other amendments to be used alone or in combination with acid-tolerant plants to overcome the problem. Additional information is needed concerning the impact of soil acidity on nutrient-supplying power of the soil and nutrient uptake and utilization by plants. To this end, the effect of soil acidity on plant-microbial interactions and on microorganisms involved in nutrient cycling needs to be elucidated.

These and other topics related to plant growth in acid soils were addressed by 200 scientists from 30 countries at the Second International Symposium on Plant-Soil Interactions at Low pH, held at Pipestem Resort State Park, West Virginia, USA, from June 24–29, 1990. The symposium consisted of 180 oral and poster presentations in eight sessions. Major areas covered in the sessions included chemistry of acid soils, fertility of acid soils, management of acid soils, microbial relations in acid soils, physiology/biochemistry of acid stress tolerance in plants, identification of acid-tolerant plants, and genetics/breeding of acid-tolerant plants. The present Proceedings contain 122 refereed papers from the symposium. These research and review articles cover the latest developments on a wide range of topics related to soil acidity and plant growth.

The Third International Symposium on Plant-Soil Interactions at Low pH will be held in Queensland, Australia, in 1993. It is anticipated that the symposium will occur between June and September at a resort location in Queensland. Local organizers for the symposium will be Dr. D.G. Edwards, Department of Agriculture, University of Queensland, St. Lucia QLD 4067, Australia, and Dr. R.C. Bruce, Queensland Department of Primary Industries, Meiers Road, Indooroopilly QLD 4068, Australia.

R.J. Wright
V.C. Baligar
R.P. Murrmann