Hydrometallurgy '94

Published for the Institution of Mining and Metallurgy and the Society of Chemical Industry by Chapman & Hall

SPRINGER-SCIENCE+BUSINESS MEDIA, B.V.
Contents

Organizing committee and list of sponsors xiii

Foreword xv

List of contributors xix

HYDROMETALLURGY AND SUSTAINABLE DEVELOPMENT

EU R&D activity and strategy for sustainable development in the mineral industries 3
Alain Adjemian

Hydrometallurgy – an environmentally sustainable technology? 13
M.T. Anthony and D.S. Flett

Environmental impact of increasing production of gold from hydrothermal resources 27
A.K. Haines

In-situ leaching recovery of copper: what’s next? 43
J.B. Hiskey

Hydrometallurgical processing of refinery slimes at Phelps Dodge: theory to practice 69
J.E. Hoffmann and Bradford Wesstrom

Materials production and the environment 107
R.C. Villas Bôas

FUNDAMENTALS

Reaction of galena in ferric sulphate–sulphuric acid media 125
J.E. Dutrizac and T.T. Chen

Multicomponent equilibrium calculations in process design: study of some acid digester reactors 139
Pertti Koukkari, Hannu Sippola and Anna Sundquist
Contents

Hematite solubility in sulphate process solutions 159
V.G. Papangelakis, B.C. Blakey and H. Liao

Hydrothermal precipitation from aqueous solutions containing iron(III), arsenate and sulphate 177
P.M. Swash and A.J. Monhemius

LEACHING

Heap leaching of poor nickel laterites by sulphuric acid at ambient temperature 193
S. Agatzini-Leonardou and D. Dimaki

Mechano-chemical treatment of tetrahedrite as a new non-polluting method of metals recovery 209
Peter Baláž et al.

Non-traditional methods of treating high-silicon ores containing rare elements 219
S.V. Chizhevskaya et al.

Scope and limitations for application of selectivity in oxidation potential-controlled leaching of metal sulphides 229
N.L. Piret and J.F. Castle

Control of arsenic and selenium during nickel matte leaching 253
J.J. Robinson, K. Barbetti and R.P. Das

Electrochemical study of oxidative dissolution of synthetic violarite in aqueous media 273
T.E. Warner, N.M. Rice and N. Taylor

BIOPROCESSING

Stability of arsenical bacterial oxidation products 291
Katerina Adam et al.

Removal of iron from kaolin and quartz: dissolution with organic acids 313
C.F. Bonney
Contents

Bioreduction of gold on algae and with amino acids 325
A.R. Gee and A.W.L. Dudeney

Metal speciation in bioleach solutions during bacterial dissolution of a complex mineral sulphide concentrate 337
M.A. Jordan, C.V. Phillips and D.W. Barr

Bacterial oxidation of an auriferous arsenical concentrate 351
Constantine Komnitsas and F.D. Pooley

Oxidation of arsenopyrite in bacterial ferric solutions 361
Constantine Komnitsas and F.D. Pooley

Effect of silver and bismuth on bioleaching of copper sulphide concentrates with thermophilic microorganisms 369
J.L. Mier et al.

Dissolved iron equilibrium in bacterial leaching systems 385
J.V. Wiertz, Inés Godoy Ríos and Blanca Escobar Miguel

Influence of substrate polarization on activity of *Thiobacillus ferrooxidans* in bioleaching 395
J.V. Wiertz et al.

GOLD

Pretreatment by electrolytic or oxidative leaching for recovery of gold and silver from refractory sulphide concentrates 409
L.M. Abrantes, M.C. Costa and A.P. Paiva

Iodide–thiocynate leaching system for gold 425
O. Barbosa-Filho and A.J. Monhemius

Leaching and recovery of gold by use of acidothioureaion on copper-mine wastes: laboratory and pilot-plant tests and process modelling 441
P.F. Kavanagh et al.
Contents

PRISMA – a hydrometallurgical process simulator: application in gold extraction from refractory pyrites 463
Antonios Kontopoulos et al.

Interrelationship between lixiviants and galvanic interaction during dissolution of gold 483
L. Lorenzen, J.S.J. van Deventer and M.T. van Meersbergen

Comparative performance of porous adsorbents in presence of gold cyanide, organic foulants and solid fines 501
F.W. Petersen and J.S.J. van Deventer

Reductive sorption methods for extraction of noble metals from solution 517
Yu. A. Tarasenko et al.

Dissolution of gold in oxidized bromide solutions 527
R.B.E. Trindade, P.C.P. Rocha and J.P. Barbosa

Leaching of gold from sulphide concentrates with thiosulphate/polysulphide produced by disproportionation of elemental sulphur in ammoniacal media 541
Zhu Guocai, Fang Zhaoheng and Chen Jiayong

Adsorption of gold-thiourea complex on Greek lignite 547
A.I. Zouboulis, K.A. Kydros and K.A. Matis

SOLUTION PURIFICATION

Norzink removal of cobalt from zinc sulphate electrolytes 563
Kjetil Børve and Terje Østvold

Cementation of mercury(II) from chloroalkali effluents by use of Zn and Fe 579
J.M.R. de Carvalho and A. Anacleto

Removal of antimony and bismuth from copper tankhouse electrolytes 591
D.C. Cupertino et al.
Novel solvent extraction reagents for recovery of zinc from sulphate leach solutions
R.F. Dalton and P.M. Quan

Recovery of acids and bases used in metal treatment processes by diffusion dialysis
G.P. Herz, C. Byszewski and M. Jaffari

Recommended separation processes for ion-absorbed rare earth minerals
Li Deqian et al.

Purification of waste waters containing heavy metals by surfactant liquid membrane extraction
Mohammed Samar et al.

Electroassisted separation of metals by solvent extraction and supported-liquid membranes
D.J. Schiffrin et al.

Equilibrium and kinetic studies of copper extraction from chloride solutions with pyridine carboxylates
J. Szymanowski et al.

Cadmium removal from phosphoric acid – Israeli experience
S.D. Ukeles, E. Ben-Yoseph and N.P. Finkelstein

Solvent extraction of rhodium with Kelex 100
G.L. Yan and J. Alstad

EFFLUENT TREATMENT

Removal of free cyanide from solution with silver-impregnated activated carbon
Y. Choi, H.T. Lieuw and G. Van Weert

Removal of heavy metal ions from liquid effluents by solvent-impregnated resins
J.L. Cortina et al.
Use of a fluidized-bed ion-exchange system for heavy metals removal from waste streams 741
Paz Cosmen and M.L. Ruiz

Application of ultrafiltration assisted by complexation to treatment of industrial waste waters 755
Gérard Durand, Mohamed Rakib and Isabelle Michelet

Application of strong magnetic fields for heavy metal removal 767
Matthias Franzreb et al.

Design and construction aspects of pilot-scale passive treatment systems for acid rock drainage at metal mines 777
J.J. Gusek, J.T. Gormley and J.W. Scheetz

Wheal Jane – can wetlands technology cope? 795
R.M. Hamilton, N.A. Postlethwaite and S.A. Foster

Retention of cadmium in clay minerals by a hydrothermal method 807
Ke Jia-Jun

Use of zeolitic tuff for control and recycling of effluent 815
P.J. Leggo

NOₓ suppression with hydrogen peroxide in the metals industry 825
C.F. McDonagh

Application of fibrous ion exchangers in air purification from acidic impurities 837
V.S. Soldatov, I.S. Elinson and A.A. Shunkevich

PROCESSES

Hydrometallurgical processing of complex copper–zinc concentrates 859
B.S. Boyanov and R.I. Dimitrov
Integration of Sherritt Zinc Pressure Leach Process at Ruhr-Zink refinery, Germany
M.J. Collins et al. 869

Recovery of platinum group metals from oxide ores – TML Process
Saskia Duyvesteyn, Houyuan Liu and W.P.C. Duyvesteyn 887

Development of Intec Copper Process by an international consortium
P.K. Everett 913

Introduction to spray roasting process for hydrochloric acid regeneration and its application to mineral processing
L.J.F. Harris 923

Production of high-grade tin in a new electrolytic plant
J.F. Rodríguez et al. 939

WASTE DISPOSAL

Towards zero-discharge mining: minimization of water outflow
S.A. Cale 949

Design of a tailing facility to mitigate potential acid rock drainage
D.R. East et al. 961

Exploitation of shear and compression rheology in disposal of bauxite residue
M.D. Green, N.J. de Guingand and D.V. Boger 971

Leaching of heavy metals from contaminated concrete rubbish material
W.H. Höll 983

Processing of electric arc furnace dust via chloride hydrometallurgy
R.O. McElroy and M. McLaren 993
Contents

Prediction of water contamination arising from disposal of solid wastes 1011
P.B. Mitchell, C.P. Waller and Keith Atkinson

Improved process for concentration of ulexite and boric acid production 1025
R.E. Pocovi, A.A. Latre and O.A. Skaf

Decontamination of site of a secondary zinc smelter in Torrance, California 1035
E.G. Roche, J. Doyle and C.J. Haigh

Disposal of inorganic wastes from sulphate titanium dioxide process at Langøya, Norway 1049
K.L. Sandvik and Trygve Sverreson

Effluent treatment in IMI Phosphoric Acid Process 1059
S.D. Ukeles et al.

RECYCLING

Metals recovery from hydrodesulphurization catalysts 1075
Francisco Delmas et al.

Environmentally sound hydrometallurgical recovery of chemicals from aluminium industry spent potlining 1087
R.J. Grolman, F.M. Kimmerle and G.C. Holywell

Recovery of vandium from spent catalysts and alumina residues 1105
E.M. Ho et al.

Ecological treatment of waste products from zinc hydrometallurgy 1123
Diego Juan and Andrés Perales

Production of indium from Imperial Smelting Process residues 1153
Bosko Nikov, Petar Stojanov and Tomislav Stojadinovic

Subject index 1165
Organizing committee
Dr A.J. Monhemius (Chairman)
Dr D.S. Flett
Dr N.M. Rice
Dr T.V. Arden
Dr R.F. Dalton
Professor D.J. Fray
D. Gosden
D. Naden
Dr C.V. Phillips
K.J. Severs

List of Sponsors
Generous support of the conference by the following organizations is acknowledged with gratitude:

Bechtel Limited
BHP Minerals International Inc.
Davy International
Outokumpu Metals & Resources International
Royston Lead Plc
RTZ Limited
Solvay Interox Ltd.
Techpro Mining & Metallurgy Limited
Wenmec Systems, Inc.
ZENECA Limited
Foreword

'Hydrometallurgy '94' is the fourth in the series of international conferences on hydrometallurgy that started in 1975 in Manchester. The preceding two conferences in the series, held in 1981 and 1987, respectively, were organized by the Solvent Extraction and Ion Exchange Group of the Society of Chemical Industry (SCI); this group also initiated the organization of 'Hydrometallurgy '94'. Following preliminary discussions about the scope of the conference by the SX–IX Group committee some two and a half years ago, however, it was soon concluded that to cover adequately the current field of hydrometallurgy and its associated disciplines it would be necessary to broaden the scope of the subject matter compared with the earlier conferences. Additionally, owing to an overlap of interests in the field of hydrometallurgy, it was felt appropriate to approach the Institution of Mining and Metallurgy (IMM) with a proposal for joint organization of the conference. IMM responded swiftly and positively to the suggestion and a committee that comprised members of both bodies was assembled to begin the task of organizing a meeting that would equal and, it was hoped, exceed the high standards that had been set by previous 'Hydrometallurgy' conferences.

Since the 'Earth Summit' in Rio the concept of sustainable development has been much in vogue. The associated ideas of cleaner technology, recycling and waste minimization have particular relevance to the extraction and processing of metals and other mineral products. The scientific principles of inorganic and physical chemistry on which are based most of the techniques and processes that are used in hydrometallurgy are precisely those which have to be employed to clean up the excesses of the past, to treat the effluents of today and to design the cleaner processes of the future. Thus, the separation of ionic species in solution by selective precipitation, ion exchange or solvent extraction—techniques that are very familiar to the hydrometallurgist—can be readily adapted to the treatment of industrial effluents and other waste waters containing toxic metals and other undesirable solutes. The thermodynamic principles that are used to measure and quantify the relative stabilities and instabilities of phases, solid, liquid and gaseous, and which, for the hydrometallurgist, are most visibly embodied in the ubiquitous
Eh–pH diagrams, are just those on which judgements have to be based about the environmental compatibility and stability of process wastes destined for long-term disposal.

Thus, it seemed to the Organizing Committee to be entirely appropriate to try to reflect the broad applicability of the principles and processes of the discipline by giving 'Hydrometallurgy '94' the subtitle, 'Environmentally Sustainable Technology'. The first circular and initial publicity, in which these ideas were put forward, seem to have struck a chord with workers in the field, as they resulted in well in excess of 150 abstracts being submitted for consideration. The Organizing Committee, though very gratified by this excellent response, was then faced with a dilemma: 'Hydrometallurgy' conferences have traditionally been run in single session so that all delegates could attend the whole conference. This format, however, severely restricts the number of papers that can be accommodated. The alternative—to go to parallel or multiple sessions to increase the number of papers presented—would fragment the audience and lose the intimacy and solidarity of interest that have characterized previous conferences in the series.

Eventually, a compromise was reached: the major part of the conference would retain the single-session format, but there would be some parallel oral sessions, plus a major poster paper session, in order to increase the number of papers that could be accepted. In spite of these changes, the Organizing Committee had the unenviable task of selecting for eventual presentation at the conference no more than half of the abstracts submitted. The results of this process are contained in this book, comprising 78 papers by authors from 30 countries, which we believe presents a comprehensive picture of the current state-of-the-art and future trends in the technology of hydrometallurgy and its rapidly expanding role in the field of environmental engineering.

For their help in bringing all this to fruition I am very grateful to my colleagues on the Organizing Committee here in London for their hard work, particularly in refereeing the papers. The members of the overseas advisory board have also made an important contribution to the event by soliciting support and providing publicity for the conference in their own countries or regions.
'Hydrometallurgy '94' is the first major conference for which the IMM and the SCI have collaborated in joint sponsorship. The division of responsibilities between the two Conference offices was clearly defined by agreement at the outset, IMM taking responsibility for the editing, refereeing and production of the proceedings, whereas SCI is dealing with the organization and management of the conference itself. To date, this arrangement has worked extremely smoothly and I wish to pay tribute to the dedicated efforts of the staff of both organizations. This experience augurs well for future collaboration between SCI and IMM, which have a number of areas of common interest.

Another major difference between 'Hydrometallurgy '94' and previous meetings in the series is the change of venue to Cambridge. We hope that, in choosing Churchill College, we have provided a setting of tranquillity that will enable delegates to obtain maximum benefits from the high quality of the papers that are being presented and from the company of their colleagues from all over the world. The picturesque town of Cambridge provides a wide choice of historic settings for the social events, which we hope will help to make 'Hydrometallurgy '94' a memorable event.

Finally, I wish to record two important votes of thanks from the Organizing Committee: first, to the sponsoring companies, listed elsewhere in this volume, whose generous donations have enabled us to provide first-class social events while still keeping the registration fees to reasonable levels; and, second, to all authors for their contributions to this volume and to the conference—your work has made ours worthwhile.

Dr. A. J. Monhemius
Chairman, Organizing Committee
London, April, 1994
Contributors*

L. M. Abrantes (409), Departamento de Química, Faculdade de Ciências de Lisboa, Lisbon, Portugal
Marcela Achimovičová (209), Institute of Geotechnics of the Slovak Academy of Sciences, Košice, Slovakia
Katerina Adam (291), Laboratory of Metallurgy, National Technical University of Athens, Athens, Greece
Alain Adjemian (3), Directorate General for Science, Research and Development, European Commission, Brussels, Belgium
S. Agatzini-Leonardou (193), Department of Mining and Metallurgical Engineering, National Technical University of Athens, Athens, Greece
M. Aguilar (725), Chemical Engineering Department, Universitat Politècnica de Catalunya, Barcelona, Spain
F. J. Alguacil (939), Centro Nacional de Investigaciones Metalúrgicas, Madrid, Spain
J. Alstad (701), Department of Chemistry, University of Oslo, Oslo, Norway
A. Anacleto (579), Department of Chemical Engineering, Instituto Superior Técnico, Technical University of Lisbon, Lisbon, Portugal
M. T. Anthony (13), St. Barbara Consultancy Services, Essex, England
Keith Atkinson (1011), Camborne School of Mines, University of Exeter, Redruth, Cornwall, England
A. A. Bagreev (517), Institute for Sorption and Problems of Endoecology, Academy of Sciences of Ukraine, Kiev, Ukraine
W. Bahl (869), Ruhr-Zink, Datteln, Germany
Peter Baláž (209), Institute of Geotechnics of the Slovak Academy of Sciences, Košice, Slovakia
A. Ballester (369), Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
K. Barbetti (253), A. J. Parker Cooperative Research Centre for Hydrometallurgy, Chemistry Centre (WA), Department of Minerals

*Initial page number(s) of authors' contributions given in brackets.
Contributors

and Energy, Bentley, Western Australia
J. P. Barbosa (527), CETEM—Centre for Mineral Technology, Cidade
Universitária, Rio de Janeiro, Brazil
O. Barbosa-Filho (425), Department of Materials Science and
Metallurgy, Catholic University, Rio de Janeiro, Brazil
D. W. Barr (337), Advanced Technical Development, Bundoora,
Victoria, Australia
Denise Bauer (675), Laboratoire de Chimie Analytique associé au
CNRS, Ecole Supérieure de Physique et de Chimie Industrielles,
Paris, France
E. Ben-Yoseph (683), Israel Chemicals, Ltd., IMI Institute for
Research and Development, Haifa Bay, Israel
B. C. Blakey (159), Department of Chemical Engineering and Applied
Chemistry, University of Toronto, Toronto, Canada
M. L. Blázquez (369), Departamento de Ciencia de los Materiales e
Ingeniería Metalúrgica, Facultad de Ciencias Químicas, Universidad
Complutense de Madrid, Madrid, Spain
D. V. Boger (971), Advanced Mineral Products Centre, Department of
Chemical Engineering, University of Melbourne, Victoria, Australia
C. F. Bonney (313), Mineral Industry Research Organisation,
Lichfield, England
Kjetil Børve (563), Norzink AS, Odda, Norway
B. S. Boyanov (859), Department of Chemistry, University of Plovdiv,
Plovdiv, Bulgaria
I. Bustero (655), INASMET, San Sebastián, Spain
C. Byszewski (613), Graver Water, Union, New Jersey, U.S.A.
S. A. Cale (949), Knight Piésold and Partners, Ashford, Kent, England
C. Caravaca (939), Centro Nacional de Investigaciones Metalúrgicas,
Madrid, Spain (presently, Department of Mineral Resources
Engineering, Royal School of Mines, Imperial College of Science,
Technology and Medicine, London, England)
J. M. R. de Carvalho (579), Department of Chemical Engineering,
Instituto Superior Técnico, Technical University of Lisbon, Lisbon,
Portugal
J. F. Castle (229), RTZ Consultants, Ltd., Bristol, England
A. M. Chekmarev (219), D. Mendeleev University of Chemical
Technology of Russia, Moscow, Russia
Chen Jiayong (541), Institute of Chemical Metallurgy, Chinese
Academy of Sciences, Beijing, China
T. T. Chen (125), CANMET, Ottawa, Canada
Y. Cheng (655), Department of Chemistry, University of Liverpool,
Liverpool, England
André Chesné (635), Laboratoire de Chimie Nucléaire et Industrielle,
Contributors

Ecole Centrale Paris, Châtenay-Malabry, France
S. V. Chizhevskaya (219), D. Mendeleev University of Chemical Technology of Russia, Moscow, Russia
Y. Choi (711), Delft University of Technology, Faculty of Mining and Petroleum Engineering, Department of Raw Materials Technology, Delft, The Netherlands
R. Cierpiszewski (675), Academy of Economics, Poznan, Poland
M. J. Collins (869), Sherritt, Inc., Fort Saskatchewan, Canada
J. L. Cortina (725), Chemical Engineering Department, Universitat Politècnica de Catalunya, Barcelona, Spain
Paz Cosmen (741), CIEMAT, Madrid, Spain
M. C. Costa (409), Departamento de Química, Faculdade de Ciências de Lisboa, Lisbon, Portugal
Gérard Cote (675), Laboratoire de Chimie Analytique associé au CNRS, Ecole Supérieure de Physique et de Chimie Industrielles, Paris, France
M. Cox (219), Division of Chemical Sciences, University of Hertfordshire, Hatfield, England
D. C. Cupertino (591), ZENECA Specialties, Blackley, Manchester, England
S. A. Curran (441), Dublin Institute of Technology, Dublin, Ireland
I. Dalrymple (1075), Environmental Division, E. A. Technology, Capenhurst, Chester, England
R. F. Dalton (601), ZENECA Specialties, Blackley, Manchester, England
R. P. Das (253), Regional Research Laboratory, Bhubaneswar, India
Francisco Delmas (1075), Materials Department, Instituto Nacional de Engenharia e Tecnologia Industrial, Lumiar, Lisbon, Portugal
J. S. J. van Deventer (483,501), Department of Metallurgical Engineering, University of Stellenbosch, Stellenbosch, South Africa
D. Dimaki (193), Department of Mining and Metallurgical Engineering, National Technical University of Athens, Athens, Greece
O. N. Dimitropoulou (463), Laboratory of Metallurgy, National Technical University of Athens, Athens, Greece
R. I. Dimitrov (859), Department of Chemistry, University of Plovdiv, Plovdiv, Bulgaria
J. Doyle (1035), CRA—Advanced Technical Development, Bundoora, Victoria, Australia
A. W. L. Dudeney (325), Department of Mineral Resources Engineering, Royal School of Mines, Imperial College of Science, Technology and Medicine, London, England
Gérard Durand (635,655), Laboratoire de Chimie Nucléaire et Industrielle, Ecole Centrale Paris, Châtenay-Malabry, France
Contributors

J. E. Dutrizac (125), CANMET, Ottawa, Canada
Saskia Duyvesteyn (887), University of California, Berkeley, California, U.S.A.
W. P. C. Duyvesteyn (887), The Minerals Laboratory, BHP Minerals, Reno, Nevada, U.S.A.
D. R. East (961), Knight Piésold and Co., Denver, Colorado, U.S.A.
S. H. Eberle (767), Kernforschungszentrum Karlsruhe, Institute for Radiochemistry, Water Technology Division, Karlsruhe, Germany
S. Elinson (837), Institute of Physical Organic Chemistry of the Belarus Academy of Sciences, Minsk, Belarus
Blanca Escobar Miguel (385), Departamento de Ingeniería Química, University of Chile, Santiago, Chile
P. K. Everett (913), Intec Pty., Ltd., Chatswood, New South Wales, Australia
Fang Zhaoheng (541), Institute of Chemical Metallurgy, Chinese Academy of Sciences, Beijing, China
L. H. Filipek (961), Knight Piésold and Co., Denver, Colorado, U.S.A.
N. P. Finkelstein (683), Israel Chemicals, Ltd., IMI Institute for Research and Development, Haifa Bay, Israel
D. S. Flett (13), St. Barbara Consultancy Services, Essex, England
B. F. Foley (441), Dublin Institute of Technology, Dublin, Ireland
S. A. Foster (795), Arthur D. Little, Inc., Cambridge, Massachusetts, U.S.A.
Matthias Franzreb (767), Kernforschungszentrum Karlsruhe, Institute for Radiochemistry, Water Technology Division, Karlsruhe, Germany
G. Friedman (1059), Israel Chemicals, Ltd., IMI Institute for Research and Development, Haifa Bay, Israel
A. R. Gee (325), Formerly, Department of Mineral Resources Engineering, Royal School of Mines, Imperial College of Science, Technology and Medicine, London, England (now BHP Minerals, Mayfield, New South Wales, Australia)
D. Gilroy (655), E. A. Technology, Capenhurst, Chester, England
Inés Godoy Rios (385), Departamento de Ingeniería Química, University of Chile, Santiago, Chile
C. Gómez (369), Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
F. González (369), Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
J. T. Gormley (777), Knight Piésold and Co., Denver, Colorado, U.S.A.
M. D. Green (971), Advanced Mineral Products Centre, Department of
Contributors

Chemical Engineering, University of Melbourne, Victoria, Australia
R. J. Grolman (1087), E. P. & P., Chicoutimi, Quebec, Canada
N. J. de Guingand (971), Advanced Mineral Products Centre, Department of Chemical Engineering, University of Melbourne, Victoria, Australia
J. J. Gusek (777), Knight Piésold and Co., Denver, Colorado, U.S.A.
C. J. Haigh (1035), Charlestown, New South Wales, Australia
A. K. Haines (27), Minerals Technology, Gencor, Ltd., Johannesburg, South Africa
R. M. Hamilton (795), National Rivers Authority, Exeter, England
L. J. F. Harris (922), Process Systems and Safety Department, Babcock King-Wilkinson, Ltd. (formerly, Babcock Contractors, Ltd.), Crawley, England
G. P. Herz (613), Tokuyama Soda Company, Tokyo, Japan
J. B. Hiskey (43), Materials Science and Engineering Department, University of Arizona, Tucson, Arizona, U.S.A.
E. M. Ho (1105), A. J. Parker Cooperative Research Centre in Hydrometallurgy, Murdoch University, Perth, Western Australia
J. E. Hoffmann (69), Jan H. Reimers and Associates, Houston, Texas, U.S.A.
W. H. Höll (767, 983), Kernforschungszentrum Karlsruhe, Institute for Radiochemistry, Water Technology Division, Karlsruhe, Germany
G. C. Holywell (1087), Alcan International, Ltd., Kingston Research and Development Centre, Kingston, Ontario, Canada
J. S. Jackson (591), ASARCO, Inc., Salt Lake City, Utah, U.S.A.
M. Jaffari (613), Malek, Inc., San Diego, California, U.S.A.
A. Jakubiak (675), Institute of Chemical Technology and Engineering, Poznan Technical University, Poznan, Poland
M. A. Jordan (337), Camborne School of Mines, Faculty of Engineering, University of Exeter, Redruth, Cornwall, England
Diego Juan (1123), Department of Chemical Engineering, University of Murcia, Cartagena, Spain
K-P. Jüngst (767), Kernforschungszentrum Karlsruhe, Institute for Technical Physics, Karlsruhe, Germany
Roland Kammel (209), Institute of Metallurgy, Technical University, Berlin, Germany
P. F. Kavanagh (441), Dublin Institute of Technology, Dublin, Ireland
Ke Jia-Jun (807), Institute of Chemical Metallurgy, Academia Sinica, Beijing, China
F. M. Kimmerle (1087), Alcan International, Ltd., Arvida Research and Development Centre, Jonquière, Quebec, Canada
M. G. King (591), ASARCO, Inc., Salt Lake City, Utah, U.S.A.
Chris Kiranoudis (463), Laboratory of Process Analysis and Design,
Contributors

National Technical University of Athens, Athens, Greece
O. M. Klimenko (219), D. Mendeleev University of Chemical Technology of Russia, Moscow, Russia
L. Kogan (1059), Israel Chemicals, Ltd., IMI Institute for Research and Development, Haifa Bay, Israel
Constantine Komnitsas (291, 351, 361), Laboratory of Metallurgy, National Technical University of Athens, Athens, Greece
Antonios Kontopoulos (291, 463), Laboratory of Metallurgy, National Technical University of Athens, Athens, Greece
Pertti Koukkari (139), Kemira Oy, Helsinki, Finland
Theodoros Kritikos (463), Laboratory of Process Analysis and Design, National Technical University of Athens, Athens, Greece
Mária Kušnierová (209), Institute of Geotechnics of the Slovak Academy of Sciences, Košice, Slovakia
K. A. Kydros (547), Department of Chemistry, Aristotle University, Thessaloniki, Greece
J. Kyle (1105), A. J. Parker Cooperative Research Centre in Hydrometallurgy, Murdoch University, Perth, Western Australia
S. Lallenec (1105), A. J. Parker Cooperative Research Centre in Hydrometallurgy, Murdoch University, Perth, Western Australia
A. A. Latre (1025), Instituto de Beneficio de Minerales, Facultad de Ingeniería, Salta, Argentina
P. J. Leggo (815), Environmental Minerals (U.K.), Linton, Cambridge, England
Li Deqian (627), Changchun Institute of Applied Chemistry, Changchun, China
H. Liao (159), Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
H. T. Lieuw (711), Delft University of Technology, Faculty of Mining and Petroleum Engineering, Department of Raw Materials Technology, Delft, The Netherlands
Houyuan Liu (887), The Minerals Laboratory, BHP Minerals, Reno, Nevada, U.S.A.
L. Lorenzen (483), Department of Metallurgical Engineering, University of Stellenbosch, Stellenbosch, South Africa
Ma Gengxiang (627), Changchun Institute of Applied Chemistry, Changchun, China
M. Makwana (869), Sherritt, Inc., Fort Saskatchewan, Canada
Dimitrios Marinos-Kouris (463), Laboratory of Process Analysis and Design, National Technical University of Athens, Athens, Greece
Zacharias Maroulis (463), Laboratory of Process Analysis and Design, National Technical University of Athens, Athens, Greece
S. Martinez (939), Centro Nacional de Investigaciones Metalúrgicas,
Contributors

Madrid, Spain
I. M. Masters (869), Sherritt, Inc., Fort Saskatchewan, Canada
K. A. Matis (547), Department of Chemistry, Aristotle University, Thessaloniki, Greece
M. McClaren (993), Terra Gaia Environmental Group, Vancouver, British Columbia, Canada
C. F. McDonogh (825), Solvay Interox Research and Development, Widnes, England
R. O. McElroy (993), Fluor Daniel Wright, Vancouver, British Columbia, Canada
J. McLoughlin (441), Dublin Institute of Technology, Dublin, Ireland
C. McNamee (441), Dublin Institute of Technology, Dublin, Ireland
Meng Shulan (627), Changchun Institute of Applied Chemistry, Changchun, China

M. T. van Meersbergen (483), Department of Metallurgical Engineering, University of Stellenbosch, Stellenbosch, South Africa
Isabelle Michelet (755), Laboratoire de Chimie Nucléaire et Industrielle, Ecole Centrale Paris, Châtenay-Malabry, France
J. L. Mier (369), Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
N. Miralles (725), Chemical Engineering Department, Universitat Politècnica de Catalunya, Barcelona, Spain
P. B. Mitchell (1011), Camborne School of Mines, University of Exeter, Redruth, Cornwall, England
A. J. Monhemius (177, 425), Department of Mineral Resources Engineering, Royal School of Mines, Imperial College of Science, Technology and Medicine, London, England
Pedro Moya (395), Departamento de Ingeniería Química, University of Chile, Santiago, Chile
J. C. Mugica (655), INASMET, San Sebastián, Spain
D. M. Muir (1105), A. J. Parker Cooperative Research Centre in Hydrometallurgy, Murdoch University, Perth, Western Australia
K. Mullins (441), Minmet Plc, Dublin, Ireland
Bosko Nikov (1153), "Zletovo" Metallurgical and Chemical Company, Titov Veles, Former Yugoslav Republic of Macedonia
Carlos Nogueira (1075), Materials Department, Instituto Nacional de Engenharia e Tecnologia Industrial, Lumiar, Lisbon, Portugal
Terje Østvold (563), Institute of Inorganic Chemistry, NTH, University of Trondheim, Trondheim, Norway
P. Owens (441), Dublin Institute of Technology, Dublin, Ireland
E. Ozberk (869), Sherritt, Inc., Fort Saskatchewan, Canada
A. P. Paiva (409), Departamento de Química, Faculdade de Ciências
Contributors

de Lisboa, Lisbon, Portugal
V. G. Papangelakis (159), Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
N. L. Papassiopi (291, 463), Laboratory of Metallurgy, National Technical University of Athens, Athens, Greece
Dominique Pareau (635), Laboratoire de Chimie Nucléaire et Industrielle, Ecole Centrale Paris, Châtenay-Malabry, France
J. Parkes (1075), Faraday Centre, Carlow, Ireland
Ioannis Paspaliaris (463), Laboratory of Metallurgy, National Technical University of Athens, Athens, Greece
Andrés Perales (1123), Department of Chemical Engineering, University of Murcia, Cartagena, Spain
F. W. Petersen (501), Cape Technikon, Cape Town, South Africa
C. V. Phillips (337), Camborne School of Mines, Faculty of Engineering, University of Exeter, Redruth, Cornwall, England
N. L. Piret (229), Stolberg Consult GmbH, Neuss, Germany
R. E. Pocovi (1025), Instituto de Beneficio de Minerales, Facultad de Ingeniería, Salta, Argentina
F. D. Pooley (291, 351, 361), University of Wales, Cardiff, Wales
N. A. Postlethwaite (795), Marcus Hodges Environmental, Ltd., Exeter, England
M. V. Povetkina (219), D. Mendeleev University of Chemical Technology of Russia, Moscow, Russia
R. Püllenberg (869), Ruhr-Zink, Datteln, Germany
P. M. Quan (601), ZENECA Specialties, Blackley, Manchester, England
Mohamed Rakib (755), Laboratoire de Chimie Nucléaire et Industrielle, Ecole Centrale Paris, Châtenay-Malabry, France
I. Raz (1059), Israel Chemicals, Ltd., IMI Institute for Research and Development, Haifa Bay, Israel
G. V. Reznik (517), Institute for Sorption and Problems of Endoeology, Academy of Sciences of Ukraine, Kiev, Ukraine
N. M. Rice (273), Department of Mining and Mineral Engineering, University of Leeds, Leeds, England
J. J. Robinson (253), A. J. Parker Cooperative Research Centre for Hydrometallurgy, Chemistry Centre (WA), Department of Minerals and Energy, Bentley, Western Australia
P. C. P. Rocha (527), CETEM—Centre for Mineral Technology, Cidade Universitária, Rio de Janeiro, Brazil
E. G. Roche (1035), Pasminco Research Centre, Boolaroo, New South Wales, Australia
J. F. Rodríguez (939), Estaños de Zamora S.A., Villalarbo, Zamora, Spain
M. L. Ruiz (741), CIEMAT, Madrid, Spain
Mohammed Samar (635), Laboratoire de Chimie Nucléaire et Industrielle, Ecole Centrale Paris, Châtenay-Malabry, France
Angel Sanhueza (395), Departamento de Ingeniería Química, University of Chile, Santiago, Chile
K. L. Sandvik (1049), Department of Geology and Mineral Engineering, NTH, University of Trondheim, Trondheim, Norway
A. M. Sastre (725), Chemical Engineering Department, Universitat Politècnica de Catalunya, Barcelona, Spain
J. W. Scheetz (777), Brewer Gold Company, Jefferson, South Carolina, U.S.A.
D. J. Schiffrin (655), Department of Chemistry, University of Liverpool, Liverpool, England
A. A. Shunkevich (837), Institute of Physical Organic Chemistry of the Belarus Academy of Sciences, Minsk, Belarus
F. A. Silva (655), Department of Chemistry, University of Porto, Porto, Portugal
O. A. Sinegribova (219), D. Mendeleev University of Chemical Technology of Russia, Moscow, Russia
Hannu Sippola (139), GEM Systems Oy, Espoo, Finland
O. A. Skaf (1025), Instituto de Beneficio de Minerales, Facultad de Ingeniería, Salta, Argentina
V. S. Soldatov (837), Institute of Physical Organic Chemistry of the Belarus Academy of Sciences, Minsk, Belarus
Song Wenzhong (627), Changchun Institute of Applied Chemistry, Changchun, China
Tomislav Stojadinovic (1153), "Zletovo" Metallurgical and Chemical Company, Titov Veles, Former Yugoslav Republic of Macedonia
Petar Stojanov (1153), "Zletovo" Metallurgical and Chemical Company, Titov Veles, Former Yugoslav Republic of Macedonia
V. V. Strelko (517), Institute for Sorption and Problems of Endoecology, Academy of Sciences of Ukraine, Kiev, Ukraine
Anna Sundquist (139), Kemira Oy, Helsinki, Finland
Trygve Sverreson (1049), NOAH Langøya A/S, Holmestrand, Norway
P. M. Swash (177), MIRO Arsenic Research Group, Department of Mineral Resources Engineering, Royal School of Mines, Imperial College of Science, Technology and Medicine, London, England
J. Szymanowski (675), Institute of Chemical Technology and Engineering, Poznan Technical University, Poznan, Poland
S. Tamburini (655), Istituto di Chimica e Tecnologia dei Radioelementi, Padua, Italy
Yu. A. Tarasenko (517), Institute for Sorption and Problems of Endoecology, Academy of Sciences of Ukraine, Kiev, Ukraine
Contributors

P. A. Tasker (591), ZENECA Specialties, Blackley, Manchester, England
N. Taylor (273), School of Chemistry, University of Leeds, Leeds, England
N. P. Tidy (291), University of Wales, Cardiff, Wales
R. B. E. Trindade (527), CETEM—Centre for Mineral Technology, Cidade Universitária, Rio de Janeiro, Brazil
S. D. Ukeles (683, 1059), Israel Chemicals, Ltd., IMI Institute for Research and Development, Haifa Bay, Israel
G. Van Weert (711), Delft University of Technology, Faculty of Mining and Petroleum Engineering, Department of Raw Materials Technology, Delft, The Netherlands
Tomás Vargas (395), Departamento de Ingeniería Química, University of Chile, Santiago, Chile
S. Vigato (655), Istituto di Chimica e Tecnologia dei Radioelementi, Padua, Italy
R. C. Villas Bôas (107), CETEM—Centre for Mineral Technology, Cidade Universitária, Rio de Janeiro, Brazil
Adriaan de Villiers (961), Knight Piésold and Co., Denver, Colorado, U.S.A.
Nikolaos Voros (463), Laboratory of Process Analysis and Design, National Technical University of Athens, Athens, Greece
C. P. Waller (1011), Camborne School of Mines, University of Exeter, Redruth, Cornwall, England
Wang Zhonghuai (627), Changchun Institute of Applied Chemistry, Changchun, China
T. E. Warner (273), Department of Mining and Mineral Engineering, University of Leeds, Leeds, England
A. Warshawsky (725), Organic Chemistry Department, Weizmann Institute of Science, Rehovot, Israel
Bradford Wesstrom (69), Phelps Dodge Refining Corporation, El Paso, Texas, U.S.A.
J. V. Wiertz (385, 395), Departamento de Ingeniería Química, University of Chile, Santiago, Chile
T. R. Wildeman (961), Colorado School of Mines, Golden, Colorado, U.S.A.
G. L. Yan (701), North China University of Technology, Beijing, China (presently, Department of Chemistry, University of Oslo, Oslo, Norway)
A. I. Zouboulis (547), Department of Chemistry, Aristotle University, Thessaloniki, Greece
Zhu Guocai (541), Institute of Chemical Metallurgy, Chinese Academy of Sciences, Beijing, China