Structure and Dynamics of Confined Polymers
NATO Science Series

A Series presenting the results of activities sponsored by the NATO Science Committee. The Series is published by IOS Press and Kluwer Academic Publishers, in conjunction with the NATO Scientific Affairs Division.

A. Life Sciences
B. Physics
C. Mathematical and Physical Sciences
D. Behavioural and Social Sciences
E. Applied Sciences
F. Computer and Systems Sciences

1. Disarmament Technologies
2. Environmental Security
3. High Technology
4. Science and Technology Policy
5. Computer Networking

NATO-PCO-DATA BASE

The NATO Science Series continues the series of books published formerly in the NATO ASI Series. An electronic index to the NATO ASI Series provides full bibliographical references (with keywords and/or abstracts) to more than 50000 contributions from international scientists published in all sections of the NATO ASI Series.

Access to the NATO-PCO-DATA BASE is possible via CD-ROM “NATO-PCO-DATA BASE” with user-friendly retrieval software in English, French and German (WTV GmbH and DATAWARE Technologies Inc. 1989).

The CD-ROM of the NATO ASI Series can be ordered from: PCO, Overijse, Belgium
Contents

Preface vii

Contributing Authors xi

Workshop Participants xv

Profound implications for biophysics of the polymer threading a membrane transition 1

Edmund A. DiMarzio

Phage DNA transport across membranes 23

Lucienne Letellier

Translocation of macromolecules across membranes and through aqueous channels: Translocation across membranes 37

Sanford M. Simon

Protein translocation across the outer membrane of mitochondria: Structure and function of the TOM complex of *Neurospora crassa* 67

Stephan Nussberger & Walter Neupert

Protein translocation channels in mitochondria: TIM & TOM channels 85

Kathleen W. Kinnally

Sizing channels with neutral polymers 97

O.V. Krasilnikov

Dynamic partitioning of neutral polymers into a single ion channel 117

Sergey M. Bezrukov & John J. Kasianowicz

Branched polymers inside nanoscale pores 131

C. Gay, P.-G. de Gennes, E. Raphaël & F. Brochard-Wyart

Physics of DNA threading through a nanometer pore and applications to simultaneous multianalyte sensing 141

John J. Kasianowicz, Sarah E. Hendrickson, Martin Misakian, Howard H. Weetall, Baldwin Robertson & Vincent Stanford

Mechanism of ionic current blockades during polymer transport through pores of nanometer dimensions 165

David W. Deamer, Hugh Olsen, Mark A. Akeson & John J. Kasianowicz

Using nanopores to discriminate between single molecules of DNA 177

Daniel Branton & Amit Meller
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of a nanoscale pore to read short segments within single polynucleotide molecules</td>
<td>187</td>
</tr>
<tr>
<td>Mark A. Akeson, David W. Deamer, Wenonah Vercoutere, Rebecca Braslau & Hugh Olsen</td>
<td></td>
</tr>
<tr>
<td>Polymer dynamics in microporous media</td>
<td>201</td>
</tr>
<tr>
<td>Björn Åkerman</td>
<td></td>
</tr>
<tr>
<td>Entropic barrier theory of polymer translocation</td>
<td>227</td>
</tr>
<tr>
<td>Murugappan Muthukumar</td>
<td></td>
</tr>
<tr>
<td>Polymer translocation through a “complicated” pore</td>
<td>241</td>
</tr>
<tr>
<td>David K. Lubensky</td>
<td></td>
</tr>
<tr>
<td>The polymer barrier crossing problem</td>
<td>261</td>
</tr>
<tr>
<td>Wookyung Sung & Pyeong Jun Park</td>
<td></td>
</tr>
<tr>
<td>Brownian ratchets and their application to biological transport processes and macromolecular separation</td>
<td>281</td>
</tr>
<tr>
<td>Imre Derényi & R. Dean Astumian</td>
<td></td>
</tr>
<tr>
<td>Composition and structural dynamics of vertebrate striated muscle thick filaments: Role of myosin-associated proteins</td>
<td>295</td>
</tr>
<tr>
<td>Zoya A. Podlubnaya</td>
<td></td>
</tr>
<tr>
<td>Force-driven folding and unfolding transitions in single Titin molecules: Single polymer strand manipulation</td>
<td>311</td>
</tr>
<tr>
<td>Miklós S.Z. Kellermayer, Steven Smith, Carlos Bustamante & Henk L. Granzier</td>
<td></td>
</tr>
<tr>
<td>Dynamics of actin filaments in motility assays: A microscopic model and its numerical simulation</td>
<td>327</td>
</tr>
<tr>
<td>Zeno Farkas, Imre Derényi & Tomas Vicsek</td>
<td></td>
</tr>
<tr>
<td>Conformation-dependent sequence design of copolymers: Example of bio-evolution mimetics approach</td>
<td>333</td>
</tr>
<tr>
<td>Alexei R. Khokhlov, Victor A. Ivanov, Alexander V. Chertovich, Alexei A. Lazutin & Pavel G. Khalatur</td>
<td></td>
</tr>
<tr>
<td>Single molecule nucleic acid analysis by fluorescence flow cytometry</td>
<td>351</td>
</tr>
<tr>
<td>Peter M. Goodwin, W. Patrick Ambrose, Hong Cai, W. Kevin Grace, Erica J. Larson, Babetta L. Marrone, James H. Jett, James H. Werner & Richard A. Keller</td>
<td></td>
</tr>
<tr>
<td>Fluorescence energy transfer reagents for DNA sequencing and analysis: High-throughput fluorescent DNA sequencing</td>
<td>371</td>
</tr>
<tr>
<td>Jingyue Ju</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>385</td>
</tr>
</tbody>
</table>
Preface

Polymers are essential to biology because they can have enough stable degrees of freedom to store the molecular code of heredity and to express the sequences needed to manufacture new molecules. Through these they perform or control virtually every function in life.

Although some biopolymers are created and spend their entire career in the relatively large free space inside cells or organelles, many biopolymers must migrate through a narrow passageway to get to their targeted destination. This suggests the questions: How does confining a polymer affect its behavior and function? What does that tell us about the interactions between the monomers that comprise the polymer and the molecules that confine it? Can we design and build devices that mimic the functions of these nanoscale systems?

The NATO Advanced Research Workshop brought together for four days in Bikal, Hungary over forty experts in experimental and theoretical biophysics, molecular biology, biophysical chemistry, and biochemistry interested in these questions. Their papers collected in this book provide insight on biological processes involving confinement and form a basis for new biotechnological applications using polymers.

In his paper Edmund DiMarzio asks: What is so special about polymers? Why are polymers so prevalent in living things? The chemist says the reason is that a protein made of N amino acids can have any of 20 different kinds at each position along the chain, resulting in 20^N different polymers, and that the complexity of life lies in this variety. This argument is part of the answer, but the chemist is speaking only of the variety contained in a homogeneous, isotropic bag of stuff.

However, polymeric systems can also have many configuration degrees of freedom that undergo phase transitions, and these have profound consequences. There are 5 classes of phase transitions that occur only in polymeric systems. DiMarzio solves the problem of a polymer threading a membrane, shows that it has a phase transition, and uses it to explain why the other 4 classes also have phase transitions. With a suitable change of variables, each phase transition becomes a stable coordinate useful for storing data. A multimeric system has a very large number of these and thus can store huge amounts of data. DiMarzio argues that this provides a basis for biological self-assembly.

The processes of viral infection by phage, DNA transduction in bacteria, RNA translation, protein secretion, and muscle contraction all require biopolymers to migrate through, or function within, pores that are 1 to 10 nm in size. Lucienne Letellier discusses experimental studies on the transport of DNA across membranes by a phage, which tightly confines the molecule of
life in a capsid and delivers it into a target cell through a narrow portal. Sanford Simon, Stephan Nussberger and Walter Neupert, and Kathleen Kinnally extensively review the molecular mechanisms for targeting proteins to specific locations within cells and translocating them across membranes through nanoscale protein pores. The problem's significance is underscored by the fact that each of the $\sim 10^9$ proteins in each cell is replaced on a more or less regular basis. Without an efficient method to transport and target proteins to their proper locations, the cell's hierarchical organization would not exist.

Advances in experimental and theoretical methods have opened new opportunities to understand the physical properties of polymers confined in nanometer length-scale regions. Oleg Krasilnikov shows how the partitioning of linear, nonelectrolyte polymers can be used to deduce the diameter and other structural features of protein ion channels. Sergey Bezrukov and John Kasianowicz demonstrate that this simple method can also reveal information about the interactions between a nanopore and nonelectrolyte polymers that partition into it. Elie Raphaël and his colleagues discuss physical theories on how branched polymers partition into narrow pores. Nanopores might eventually be used to measure the physical properties of these complex polymers.

Bezrukov and Kasianowicz also observed that the mean occupancy time for nonelectrolyte polymers in a nanopore can be much greater than that predicted for a 1-dimensional diffusion process. These studies led to the direct measurement of individual polynucleotides through threading through a single ion channel (Kasianowicz, et. al., David Deamer, et al., Daniel Branton, et al., and Mark Akeson, et al.). Because of the great disparity in pore length scales and polymer persistence lengths, it is interesting to compare the processes of polynucleotide transport in a single nanopore with Björn Akerman's experimental results on the migration of single double-stranded DNA molecules through gels and other microscopic porous media (e.g. track-etched membranes and porous glasses). These molecules can evidently become trapped on features of widely disparate length scales. These features behave like snags and dominate the polymer diffusive motion through gels, whereas the rate of polynucleotide transport through a nanopore might be dominated by the polymer structure.

Murugappan Muthukumar, David Lubensky, and Wokyung Sung, and DiMarzio discuss several different theoretical approaches that describe the transport of polymers through gels and narrow pores. Their theories capture some of the essential features of polymer transport and provide a solid framework that will aid in the design of new experiments with these systems.

Imre Derenyi and Dean Astumian describe analytically the effects of different confinement geometries that create Brownian ratchet potentials. They illustrate models that use the random potentials to separate macromolecules and other models that use them to transport molecules across membranes,
even against a gradient in the chemical potential. Their models agree with experiment in every detail so far.

Many biopolymers, including those in muscle, function in tightly organized domains. Zoya Podlubnaya provides an overview of muscle structure and the mechanisms by which muscle contracts. Miklós Kellermayer shows how single molecule experiments can reveal detailed physical information about structural transitions in muscle proteins. In some cases, the results suggest that the behavior of single molecules accounts in part for some of the bulk tissue’s properties. Ultimately, one would like to use single molecule detection methods to probe these polymers in a state of confinement similar to that of their native environment. Zeno Farkas, Derenyi, and Tamas Vicsek explore the dynamics of actin filaments using elegant motility assays.

Alexei Khoklov and his colleagues are using Monte Carlo simulations to show that the properties of AB-copolymer globules depend strongly on whether the primary sequence of the A and B monomers is random, random-block, regular, or designed. A protein-like AB-copolymer is designed such that in the most dense globular conformation, all the hydrophobic B-units are in the core of the globule and the hydrophilic A-units form the envelope of the core. One of their interesting results shows that the A monomers in a protein-like 1-dimensional AB-copolymer are organized into blocks or domains of higher relative concentration with a long-range power-law correlation, which is fractal behavior, the signature of scale invariance.

New approaches are needed to understand the physics of polymers in extreme confinement. Advances here could have a major impact in biology, physics and chemistry and ultimately lead to the development of new methods in biotechnology. Peter Goodwin and colleagues illustrate a method for single molecule nucleic acid analysis by fluorescence flow cytometry. Jingyue Ju discusses the potential use of fluorescence energy transfer reagents for DNA sequencing. Deamer, et al., Branton and Meller, and Kasianowicz, et al. discuss the potential for using single nanopores to rapidly sequence DNA. Kasianowicz, et al. and Akeson et al. demonstrate how polymers and single nanopores might be used to detect and quantitate a wide variety of analytes in solution.

We are extremely grateful to the NATO Science Committee for its generous financial support that made the workshop and this book possible. Also appreciated is the additional financial support provided by Avanti Polar Lipids, the Hungarian Research and Development Committee, Incyte Pharmaceuticals, MATÁV Communications, and the Biotechnology Division at NIST. Finally, we thank the staff at the Puchner Castle for providing a lovely and comfortable meeting venue and Baldwin Robertson for assistance in editing this volume.
Contributing Authors

Björn Åkerman
Department of Physical Chemistry, Chalmers University of Technology, Goteborg, Sweden

Mark A. Akeson
Biophysics Laboratory, Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064

Sergey M. Bezrukov
9/1E122, NICHD, National Institutes of Health, Bethesda, MD 20892-0924

Daniel Branton
Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
The Rowland Institute for Science, Cambridge, MA 02142, USA

David W. Deamer
Biophysics Laboratory, Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95060

Imre Derényi
Department of Surgery, MC 6035, University of Chicago,
5841 S. Maryland Ave., Chicago, IL 60637
derenyi@rainbow.uchicago.edu

Peter M. Goodwin
M888 Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545
pmg@lanl.gov.

Jingyue Ju
Dept. of Chemical Engineering and the Columbia Genome Center, Columbia University, 1150 St. Nicholas Ave., NY, NY 10032

John J. Kasianowicz
Biotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899-8313
john.kasianowicz@nist.gov

Miklós S.Z. Kellermayer
Department of Biophysics, Pécs University Medical School, Pécs H-7624 HUNGARY
Alexei R. Khokhlov
Physics Department, Moscow State University, 117234 Moscow, Russia

Kathleen W. Kinnally
Division of Basic Sciences, New York University College of Dentistry, 345 East 24th St., New York, NY 10010

O. V. Krasilnikov
Laboratory of Membrane Biophysics, Department of Biophysics and Radiobiology, Federal University of Pernambuco, 50670-901, Recife, PE, Brazil
Laboratory of Molecular Physiology, Institute of Physiology and Biophysics, 700095 Tashkent, Uzbekistan

Lucienne Letellier
Institut de Biochimie et Biophysique Moléculaire et Cellulaire, UMR 8619 CNRS, Université Paris Sud, Bât 430, 91405 Orsay cedex, France.

David K. Lubensky
Department of Physics, Harvard University, Cambridge, MA 02138
lubensky@cmts.harvard.edu

Edmund A. DiMarzio
Department of Chemical Engineering, Bld. 090, University of Maryland, College Park, MD 20742

Murugappan Muthukumar
Dept. of Polymer Science and Engineering, U. Massachusetts at Amherst, Amherst, MA

Stephan Nussberger
Institute of Physiological Chemistry, University of Munich, Goethestraße 33, D-80336 München, Germany

Zoya A. Podlubnaya
Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, Pushchino, Moscow Region, 142292, Russia

Elie Raphael
Collège de France, Physique de la Matière Condensée, URA 792 du CNRS
11, place Marcelin Berthelot, 75231 Paris cedex 05, France
Contributing Authors

Sanford M. Simon
Laboratory of Cellular Biophysics, Rockefeller University, 1230 York Ave., Box 304, New York, NY 10021-6399

Wokyung Sung
Department of Physics and Institute of Polymer Research, Pohang University of Science and Technology, Pohang, 790-784, Korea
sung@galaxy.postech.ac.kr

Tomas Vicsek
Collegium Budapest/Institute for Advanced Studies, Budapest, Szentáromság u. 2, 1114 Hungary
Workshop Participants

Björn Åkerman
Department of Physical Chemistry, Chalmers University of Technology, Goteborg, Sweden

Mark A. Akeson
Biophysics Laboratory, Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064

Gyorgy Bathory
Dept. of Physiology, Semmelweis University of Medicine, H-1088 Budapest, VIII. Puskin u. 9. Budapest 8. P.O.B. 259, H-1044

Tomas Bleha
Polymer Institute, Slovak Academy of Sciences, 84236 Bratislava, Slovakia

Daniel Branton
Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138

David W. Deamer
Biophysics Laboratory, Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95060

Imre Derényi
Department of Surgery, MC 6035, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637
derenyi@rainbow.uchicago.edu

Peter Galajda
Department of Biophysics, Hungarian Academy of Science, Szeged Biological Center, Szeged, Hungary

Peter M. Goodwin
M888 Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545

Alexander Y. Grosberg
Visiting Scientist, MIT, Dept. of Physics, 13-2009, Cambridge, MA 02139

Parvez Haris
Dept. of Biological Sciences, Dr Montfort University, Hawthorn Building, The Gateway, Leicester, LE1 9BH, United Kingdom
György Hegyi
Eotvos Lorand University, Department of Biochemistry, Budapest, Puskin utca 3, H-1088, Hungary

Jingyue Ju
Dept. of Chemical Engineering and the Columbia Genome Center, Columbia University, 1150 St. Nicholas Ave., NY, NY 10032

John J. Kasianowicz
Biotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899-8313

Miklós S.Z. Kellermayer
Department of Biophysics, P écs University Medical School, P écs H-7624 HUNGARY

Alexei R. Khokhlov
Physics Department, Moscow State University, 117234 Moscow, Russia

Kathleen W. Kinnally
Division of Basic Sciences, New York University College of Dentistry, 345 East 24th St., New York, NY 10010

O. V. Krasilnikov
Laboratory of Membrane Biophysics, Department of Biophysics and Radiobiology, Federal University of Pernambuco, 50670-901, Recife, PE, Brazil; Laboratory of Molecular Physiology, Institute of Physiology and Biophysics, 700095 Tashkent, Uzbekistan

Lucienne Letellier
Institut de Biochimie et Biophysique Moléculaire et Cellulaire, UMR 8619 CNRS, Université Paris Sud, Bât 430, 91405 Orsay cedex, France.

David K. Lubensky
Department of Physics, Harvard University, Cambridge, MA 02138

András Lukács
M. Muthukumar
Dept. of Polymer Science and Engineering, U. Massachusetts at Amherst, Amherst, MA

Stephan Nussberger
Institute of Physiological Chemistry, University of Munich, Goethestrasse 33, D-80336 Munchen, Germany

Pal Ormos
Dept. Biophysics, Hungarian Acad. Sci., Szeged Biological Center, Szeged, Hungary, Temporary address: Biophysics Group (P-21), D454, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

V. Adrian Parsegian
NIH, NICHHD, Bethesda, MD 20814

Zoya A. Podlubnaya
Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, Pushchino, Moscow Region, 142292, Russia

E. Raphael
Collège de France, Physique de la Matière Condensée, URA 792 du CNRS
11, place Marcelin Berthelot, 75231 Paris cedex 05, France

Sanford M. Simon
Laboratory of Cellular Biophysics, Rockefeller University, 1230 York Ave., Box 304, New York, NY 10021-6399

Belá Somogyi

Wokyung Sung
Department of Physics and Institute of Polymer Research, Pohang University of Science and Technology, Pohang, 790-784, Korea

J.P Tommassen
Dept. Mol. Cell. Biol., University of Utrecht, Padualaan 8, NL-3584 CH Utrecht, The Netherlands

T. Vicsek
Collegium Budapest/Institute for Advanced Studies, Budapest, Szentháromság u. 2, 1114 Hungary