DESERTIFICATION IN DEVELOPED COUNTRIES
The San Simon Valley in southeastern Arizona is an example of land degradation in the United States. The channel of the San Simon was downcut from 3 to 10 m over a reach of 100 km between 1893 and 1916. Headcutting extended up many tributaries, such as this one. Several factors appear to have converged between 1885 and 1895 to cause this large-scale erosion event, including: (a) overgrazing, (b) intense wagon and animal traffic to nearby mines, (c) construction of a railroad and drainage ditch along the main axis of the valley, and (d) severe drought. A series of water and sediment control structures have been built in the valley that have dramatically slowed - and in many cases reversed - erosion. For example, headward erosion at this site was halted in 1940 by construction of a concrete drop structure from which the photograph was taken. Although erosion has been abated at this site, the isolated surfaces on either side of the gully show no signs of recovery after 55 years. However, for the valley at-large conditions are greatly improved, particularly in the most productive, lower-lying areas.
TABLE OF CONTENTS

DAVID A. MOUAT, CHARLES F. HUTCHINSON, and BEAUMONT C. MCCLOURE / Introduction 1–4

V. ANDREU, J.L. RUBIO, and R. CERNÍ / Effect of Mediterranean Shrub on Water Erosion Control 5–15

A. BANIN and A. FISH / Secondary Desertification Due to Salinization of Intensively Irrigated Lands: The Israeli Experience 17–37

JAYNE BELNAP / Surface Disturbances: Their Role in Accelerating Desertification 39–57

GER BERGKAMP / A Hierarchical Approach for Desertification Assessment 59–78

C. BOIX, A. CALVO, A.C. IMESON, J.M. SCHOORL, SORIANO SOTO, and I.R. TIEMESSEN / Properties and Erosional Response of Soils in a Degraded Ecosystem in Crete (Greece) 79–92

HANS-JÜRGEN BOLLE / Identification and Observation of Desertification Processes with the Aid of Measurements from Space: Results from the European Field Experiment in Desertification-Threatened Areas (EFEDA) 93–101

W.R.J. DEAN, S.J. MILTON, and M.A. DU PLESSIS / Where, Why and to What Extent Have Rangelands in the Karoo, South Africa, Desertified 103–110


KARL HESS, JR. and JERRY L. HOLECHEK / Policy Roots of Land Degradation in the Arid Region of the United States: An Overview 123–141


M.T. HOFFMAN, W.J. BOND, and W.D. STOCK / Desertification of the Eastern Karoo, South Africa: Conflicting Paleoecological, Historical, and Soil Isotopic Evidence 159–177


JOHN A. LUDWIG and DAVID J. TONGWAY / Desertification in Australia: An Eye to Grass Roots and Landscapes 231–237

E.V. MILANOVA / Regional Landscape-Ecological Planning and Desertification Control in Arid Regions of the Commonwealth of Independent States 239–244

SUZANNE J. MILTON and W. RICHARD J. DEAN / South Africa’s Arid and Semi-arid Rangelands: Why Are They Changing and Can They Be Restored? 245–264

HASSAN A. NASRALLAH and ROBERT C. BALLING, JR. / Impact of Desertification on Temperature Trends in the Middle East 265–271

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>T.A. SAIKO</td>
<td>Implications of the Disintegration of the Former Soviet Union for Desertification Control</td>
<td>289–302</td>
</tr>
<tr>
<td>DAVID TONGWAY</td>
<td>Monitoring Soil Productive Potential</td>
<td>303–318</td>
</tr>
<tr>
<td>WALTER G. WHITFORD, GUSTAVO MARTINEZ-TURANZAS, and ERNESTO MARTINEZ-MEZA</td>
<td>Persistence of Desertified Ecosystems: Explanations and Implications</td>
<td>319–332</td>
</tr>
<tr>
<td>IGOR S. ZONN</td>
<td>Desertification in Russia: Problems and Solutions (an Example in the Republic of Kalmykia-Khalmg Tangch)</td>
<td>347–363</td>
</tr>
</tbody>
</table>