Advances in Experimental Medicine and Biology

Volume 796

Editorial Board

Nathan Back, State University of New York at Buffalo, Buffalo, NY, USA
Irun R. Cohen, The Weizmann Institute of Science, Rehovot, Israel
N. S. Abel Lajtha, Kline Institute for Psychiatric Research, Orangeburg, NY, USA
John D. Lambris, University of Pennsylvania, Philadelphia, PA, USA
Rodolfo Paoletti, University of Milan, Milan, Italy

For further volumes:
http://www.springer.com/series/5584
G Protein-Coupled Receptors - Modeling and Simulation
G protein-coupled receptors (GPCRs) are membrane proteins of significant interest in pharmaceutical research owing to their involvement in several important biological processes, including those leading to some serious medical conditions. In spite of focused research, progress towards the discovery of effective therapeutics for GPCRs has long been hampered by the lack of high-resolution structural information about these receptors. Although the number of high-resolution crystal structures of GPCRs has grown significantly in the past few years, the information they provide is limited. Not only are we still far from a comprehensive structural coverage of the GPCR superfamily, but the available structures refer to static, heavily engineered, and generally inactive conformational states of receptor subtypes stripped out of their natural lipid environment. Furthermore, it has become increasingly clear that a full understanding of GPCR structure and function requires dynamic information at a level of detail that is likely to require integration of experimental and computational approaches.

Significant progress has been made over the past decade in the development and application of computational approaches to the large family of GPCRs. A dedicated book that discusses in depth this important topic is lacking but strongly needed owing to: (a) the critical (but sometimes unappreciated) impact that these computational approaches have on understanding the molecular mechanisms underlying the physiological function of GPCRs in support of rational drug discovery, (b) the recent advances in theory, hardware, and software, and (c) the potential for much-improved applications using newly available experimentally-derived structural and dynamic information on GPCRs. Thus, I sought the help of experts with an established reputation in the development and/or application of computational methods to GPCRs, and asked them to contribute their state-of-the-art views on modeling and simulation of this important family of membrane proteins. I am indebted to the highly distinguished authors of this book for agreeing to participate in this project and to provide chapters for four different sessions: a first one describing the impact of currently available GPCR crystal structures on structural modeling of other receptor subtypes, a second one reporting on critical insights from simulations, a third one focusing on recent progress in rational ligand discovery and mathematical modeling, and a fourth one providing an overview of bioinformatics tools and resources that are available for GPCRs.
Heartfelt thanks also go to the several anonymous reviewers of the chapters, and to Thijs van Vlijmen from Springer for the opportunity he offered me to edit this volume. I believe this book adds a unique facet to the “Advances in Experimental Medicine and Biology” series, and I hope the reader will find it both fascinating and of enduring interest.

New York, NY, USA
Marta Filizola, Ph.D.
June 3, 2013
Contents

Part I Progress in Structural Modeling of GPCRs

1 The GPCR Crystallography Boom: Providing an Invaluable Source of Structural Information and Expanding the Scope of Homology Modeling .. 3
 Stefano Costanzi and Keyun Wang

2 Modeling of G Protein-Coupled Receptors Using Crystal Structures: From Monomers to Signaling Complexes 15
 Angel Gonzalez, Arnau Cordomí, Minos Matsoukas,
 Julian Zachmann, and Leonardo Pardo

Part II GPCRs in Motion: Insights from Simulations

3 Structure and Dynamics of G-Protein Coupled Receptors 37
 Nagarajan Vaidehi, Supriyo Bhattacharya, and Adrien B. Larsen

4 How the Dynamic Properties and Functional Mechanisms of GPCRs Are Modulated by Their Coupling to the Membrane Environment 55
 Sayan Mondal, George Khelashvili, Niklaus Johner,
 and Harel Weinstein

5 Coarse-Grained Molecular Dynamics Provides Insight into the Interactions of Lipids and Cholesterol with Rhodopsin . . . 75
 Joshua N. Horn, Ta-Chun Kao, and Alan Grossfield

6 Beyond Standard Molecular Dynamics: Investigating the Molecular Mechanisms of G Protein-Coupled Receptors with Enhanced Molecular Dynamics Methods 95
 Jennifer M. Johnston and Marta Filizola

Part III GPCR-Focused Rational Design and Mathematical Modeling

7 From Three-Dimensional GPCR Structure to Rational Ligand Discovery .. 129
 Albert J. Kooistra, Rob Leurs, Iwan J.P. de Esch,
 and Chris de Graaf
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 Mathematical Modeling of G Protein-Coupled Receptor Function: What Can We Learn from Empirical and Mechanistic Models?</td>
<td>159</td>
</tr>
<tr>
<td>David Roche, Debora Gil, and Jesús Giraldo</td>
<td></td>
</tr>
<tr>
<td>Part IV Bioinformatics Tools and Resources for GPCRs</td>
<td></td>
</tr>
<tr>
<td>9 GPCR & Company: Databases and Servers for GPCRs and Interacting Partners</td>
<td>185</td>
</tr>
<tr>
<td>Noga Kowalsman and Masha Y. Niv</td>
<td></td>
</tr>
<tr>
<td>10 Bioinformatics Tools for Predicting GPCR Gene Functions</td>
<td>205</td>
</tr>
<tr>
<td>Makiko Suwa</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>225</td>
</tr>
</tbody>
</table>