The Biology of Subcellular Nitric Oxide
Tamás Rőszer

The Biology of Subcellular Nitric Oxide

Springer
If one part suffers, every part suffers with it; if one part is honored, every part rejoices with it.

1 Corinthians 12:26
It is with great pleasure that I write this Foreword for the book by Dr. Tamás Rőszer in which every aspect of the intracellular biology of nitric oxide is comprehensively reviewed.

The biological activity of nitric oxide was originally recognised when it was discovered to be the mediator of vascular endothelium-dependent relaxation. As its actions in a variety of other biological systems were unravelled, nitric oxide became known as a mediator of cell-to-cell communication. In the last fifteen years, however, its role as an orchestrator of communication between intracellular organelles has become apparent, opening up an increasingly exciting area of research.

This book provides an elegant overview of current knowledge of the biology of subcellular nitric oxide, not only in mammalian cells but also in plants and fungi. I have no doubt that it will become a reference point, not only for teaching but also for the development of future research.

The Wolfson Institute for Biomedical Research, University College London

Prof. Sir Salvador Moncada, FMedSci, FRS
The latest progress in the field shows that NO is generated within distinct cell compartments, including specific plasma membrane regions, mitochondria, chloroplasts, peroxisomes, the Golgi-complex and intracellular membrane systems. NO synthesis plays specific roles in these compartments and, in turn, cell organelles also control intracellular NO levels. NO is an important biological signal, but a highly reactive molecule as well; thus its biological effects depend on its concentration and the chemical microenvironment of NO synthesis. A key determining factor of cellular NO effects is the subcellular compartmentalization of NO synthesizing enzymes.

To understand the role of cell compartments in NO biology, we may make an everyday analogy: the energy of fire, which can be used for heating in a fireplace or for lighting with a candle. The same factor (the energy of the fire) is required in different quantities in a fireplace and in a candle, to serve different needs. Organelles determine the effects of NO in a similar way, since they produce and tolerate different levels of NO in spatially separated locations in the cell. Organelles effectively control and maintain NO levels within a physiological range and orchestrate temporal and spatial patterns of NO synthesis. Disturbances of this organelle-specific NO homeostasis evoke cellular degeneration.

The rapid development and complexity of subcellular NO biology made it timely to produce a book dedicated to the better understanding of NO in organelle biology and the molecular mechanisms by which cell compartments give home to NO-signaling microdomains and ensure balanced NO production.

I would like to thank the Senior Editor of Springer Life Sciences, Dr. Meran Owen. I am also grateful for the help Tanja van Gaans provided in this project. Valuable image contributions provided by Dr. Madhu Dikshit (Central Drug Research Institute, CSIR, Lucknow), Dr. Mateusz Kolanczyk (Max Planck Institute for Molecular Genetics, Berlin), Dr. Jason E. Lee and Dr. Pravin B. Sehgal (New York Medical College, Valhalla), Dr. Justin Percival (University of Washington, Seattle) and Dr. Iván Schmelczer (Debrecen University, Hungary) are acknowledged. I also wish to thank Dr. Gáspár Bánfalvi (Debrecen University, Hungary) for his support in carrying out my NO-research; the many colleagues at Debrecen University and research groups.
of the Hungarian Academy of Sciences, with whom I have worked for years; and
Dr. Mercedes Ricote (Spanish National Cardiovascular Research Center, Madrid)
for support in my current scientific work. Livia I. Lelkes provided valuable editorial
assistance; her careful and timely work is highly appreciated.

Madrid, Spain
15 August 2011

Dr. Tamás Rőszer
Contents

Part I General Concepts

1 Introduction ... 3
 1.1 Synthesis of NO in Biological Systems 3
 1.2 Mechanisms of NO Production 5
 1.3 Cellular Targets of NO: How Far from NO Synthesis? 7
 1.3.1 The Many Targets of NO 7
 1.3.2 Limited Diffusion of NO Expands the Frames
 of NO Biology 8
 Bibliography ... 11

Part II Nitric Oxide Synthesis in Prokaryote Cells

2 Nitric Oxide is a Bioproduct in Prokaryotes 19
 2.1 Prokaryotes are NO Producer Organisms 19
 2.2 Bacteria Synthesize NO and Contribute to Chemical NO
 Release from Nitrogen Oxides 19
 2.3 NO-Generating Microbes: Health, Biotechnological
 and Ecological Impact 21
 2.4 Mechanisms of Reductive NO Synthesis in Prokaryotes 24
 2.4.1 Denitrifying Bacteria Reduce NO$_2^-$ to NO: NO Synthesis
 in Anaerobiosis 24
 2.4.2 An Apparent Paradox: Nitrogen Fixation and NO Synthesis
 by Denitrification may be Present in the Same Bacterium 29
 2.4.3 Anaerobic Ammonia Oxidation (“anammox”) Also
 Generates NO 29
 2.4.4 Aerobe Bacteria are Also Capable of Reducing
 NO$_2^-$ to NO .. 30
 2.4.5 Reductive NO Synthesis Without NiRs: Cyanobacterial NO
 Production .. 31
 2.5 Oxidative NO Synthesis from L-arginine in Prokaryotes 32
2.5.1 Early Evidences on the Existence of Bacterial NOS Molecules ... 32
2.5.2 Characterization of Bacterial NOS Molecules ... 33
2.5.3 Functions of Bacterial NOS ... 34
2.6 Subcellular NO Synthesis: Fruit or Root in the Tree of Phylogeny? 35
2.7 Chapter Summary .. 38
Bibliography ... 38

Part III Nitric Oxide in Plant Organelles

3 Nitric Oxide Synthesis in the Chloroplast .. 49
 3.1 Vivat, crescat et floreat!—Overview of NO Effects in Plant Physiology 49
 3.2 Chloroplast: A Prokaryote Heritage of Plants ... 52
 3.3 Chloroplast NO Production and Photosynthesis ... 54
 3.3.1 Biochemistry of NO Production in the Chloroplast ... 54
 3.3.2 Iron Chelation and Photosynthesis is Affected by NO ... 57
 3.4 Chloroplast NO Synthesis and Cell Death .. 58
 3.4.1 The Effects of NO on the Chloroplast Membrane Systems: Thread Linking Photosynthesis and the Chloroplastic Way of Cell Death ... 58
 3.4.2 Similar Roles of NO in Prokaryotes and the Chloroplast ... 60
 3.5 Open Debates and Perspectives ... 61
 3.6 Chapter Summary .. 62
Bibliography ... 62

4 Nitric Oxide Synthesis in Leaf Peroxisomes and in Plant-Type Mitochondria 67
 4.1 Leaf Peroxisomes are Sites of Oxidative NO Synthesis ... 67
 4.2 Possible Roles of Peroxisomal NO Synthesis ... 68
 4.3 Plant-Type Mitochondria: Oxidative or Reductive NO Synthesis? 70
 4.4 Hunting for a Plant-Type NOS ... 73
 4.4.1 The First Pitfall in Finding Plant NOS ... 73
 4.4.2 The Arabidopsis thaliana NOS-1 ... 73
 4.4.3 The End of a Story? ... 76
 4.5 Chapter Summary .. 76
Bibliography ... 77

Part IV At the Edge of the Plant and Animal Kingdom

5 NO Synthesis in Subcellular Compartments of Fungi .. 83
 5.1 Introduction to the NO Biology in Fungi .. 83
 5.2 Be Fruitful and Multiply: The NO/cGMP Pathway and Sporulation 83
 5.2.1 Asexual Spore Formation Requires NO ... 83
5.2.2 Fungal Photoperiod and Sporulation: NO is Involved in Light Signalling .. 84
5.2.3 A Putative NO/cGMP Pathway in the Sporulation of Unicellular Fungi .. 86
5.2.4 Photomorphogenesis and Light Dependent NO Synthesis in Basidiomycotes 86
5.3 Destructive and Protective Faces of NO in Fungi: Nitrosative Stress, Apoptosis and the Antioxidant Nature of NO ... 87
 5.3.1 Delaying Spore Germination by Mean of Nitrosative Stress ... 87
5.3.2 Mechanisms to Escape Nitrosative Stress: Flavohemoglobins and Antioxidants 88
 5.3.3 How Gene Expression Machinery Senses NO in Fungi ... 89
 5.3.4 S-nitrosylation and Induction of Apoptotic Cell Death ... 90
 5.3.5 The Antioxidant Nature of NO in Basidiomycetes .. 90
 5.3.6 Social Fungi and the Antioxidant NO: Stress Resistance of Lichens .. 90
5.4 Biosynthesis of NO in the Fungal Cell ... 92
 5.4.1 The Oxidative and Reductive Ways of NO Synthesis in Fungi ... 92
5.5 Oxidative NO Synthesis from L-arginine in Fungi: Biochemistry and Compartmentalization of a Putative Fungal NOS ... 93
 5.5.1 Evidences Suggesting the Existence of a Fungus-Type NOS .. 93
 5.5.2 Yeast NOS: A Debated Enzyme ... 94
 5.5.3 NOS-Like Activity Occurs in the Cytoplasm .. 94
5.6 Reductive NO Synthesis in the Fungal Mitochondria .. 95
 5.6.1 A Novel Mechanism Behind Mitochondrial NO Synthesis: Cytochrome-c Oxidase 95
 5.6.2 Nitrite Reductase of Denitrifying Fungi Also Produces NO ... 96
5.7 Chapter Summary ... 98
Bibliography .. 98

5.3 Destructive and Protective Faces of NO in Fungi: Nitrosative Stress, Apoptosis and the Antioxidant Nature of NO ... 87
 5.3.1 Delaying Spore Germination by Mean of Nitrosative Stress ... 87
5.3.2 Mechanisms to Escape Nitrosative Stress: Flavohemoglobins and Antioxidants 88
 5.3.3 How Gene Expression Machinery Senses NO in Fungi ... 89
 5.3.4 S-nitrosylation and Induction of Apoptotic Cell Death ... 90
 5.3.5 The Antioxidant Nature of NO in Basidiomycetes .. 90
 5.3.6 Social Fungi and the Antioxidant NO: Stress Resistance of Lichens .. 90
5.4 Biosynthesis of NO in the Fungal Cell ... 92
 5.4.1 The Oxidative and Reductive Ways of NO Synthesis in Fungi ... 92
5.5 Oxidative NO Synthesis from L-arginine in Fungi: Biochemistry and Compartmentalization of a Putative Fungal NOS ... 93
 5.5.1 Evidences Suggesting the Existence of a Fungus-Type NOS .. 93
 5.5.2 Yeast NOS: A Debated Enzyme ... 94
 5.5.3 NOS-Like Activity Occurs in the Cytoplasm .. 94
5.6 Reductive NO Synthesis in the Fungal Mitochondria .. 95
 5.6.1 A Novel Mechanism Behind Mitochondrial NO Synthesis: Cytochrome-c Oxidase 95
 5.6.2 Nitrite Reductase of Denitrifying Fungi Also Produces NO ... 96
5.7 Chapter Summary ... 98
Bibliography .. 98

Part V Nitric Oxide Synthesis in Animal Cells

6 Harboring of NOS to the Cell Membrane .. 105
 6.1 Threads Linking NOS to the Cell Membrane: Acylation and Adaptor Proteins 105
 6.2 Association of eNOS with Caveolae of the Cell Membrane .. 111
 6.3 Association of eNOS with Cell–Cell Junctions ... 112
 6.3.1 Endothelial Cell–Cell Adhesions Bind eNOS: More than Mechanical Anchoring 112
 6.3.2 Association of NOS with Gap Junctions: Dynamic S-nitrosylation/denitrosylation 116
 6.3.3 Tight Junctions and Adherens Junctions .. 117
12 Subcellular Redistribution of NOS .. 187
 12.1 Membrane Targeting and Release of eNOS from the Caveolae .. 187
 12.2 Mislocalization of Sarcolemmal nNOS in Muscle Dystrophies ... 188
 12.3 CAPON/nNOS Redistribution in Cardiomyocytes and Skeletal Muscle Fibers .. 191
 12.4 Uncoupling of the PSD95/nNOS Interface: Potential Medical Benefits .. 192
 12.5 Redistribution of the Golgi-System and the Associated NOS Pool . 193
 12.6 NOS in the Nucleus: A Transient or Permanent NOS Pool? 194
 12.7 Dynamic NOS-Pools of the Cell 195
 12.8 Chapter Summary .. 196
Bibliography .. 197

Appendix .. 201

Glossary .. 203

Index ... 205
Abbreviations

ATP: Adenosine triphosphate
BH₄: Tetrahydrobiopterin
cAMP: Cyclic adenosine monophosphate
CAT: Catalase
CcO: Cytochrome-c oxidase
cGMP: Cyclic guanosine monophosphate
DAF-2: 4,5-diaminofluorescein diacetate (NO-indicator)
FAD: Flavin adenine dinucleotide
FMN: Flavin mononucleotide
GSH: Reduced glutathione
H₂O₂: Hydrogen peroxide
L-NAME: Nω-nitro-L-arginine methyl ester
L-NMMA: Nω-nitromethyl-L-arginine
L-NNA: Nω-nitro-L-arginine
NADPH: Reduced nicotinamide adenine dinucleotide phosphate
NiR: Nitrite reductase
NO₂⁻: Nitrite
NO₃⁻: Nitrate
NR: Nitrate reductase
O₂: Oxygen
O₂⁻: Superoxide
OH⁺: Hydroxyl radical
OH⁻: Hydroxide ion
ONOO⁻: Peroxynitrite
PKG: Protein kinase G (cGMP-dependent protein kinase)
SEM: Scanning electron microscopy
SOD: Superoxide dismutase
TEM: Transmission electron microscopy