Preface

Design research has two strands exemplified by the terms science of design and design as science. Both are commonly referred to as design science. The former studies designing scientifically and the latter treats designing as a science. The ways that designing can be studied scientifically include both computational modeling and cognitive modeling. Many computational models of designing are not founded directly on results of cognitive studies. They are founded on conjectures about designing using concepts from artificial intelligence with its focus on ways of representation and on processes that support simulation and generation. Artificial intelligence continues to provide an environmentally rich paradigm within which design research based on computational constructions can be carried out. Increasingly design cognition research, founded on concepts from cognitive science. It provides tools and methods to study human designers in both laboratory and practice settings. It is beginning to allow us to test the claims being made about designing whether carried out individually or in teams and to study the effects of the introduction of novel technologies into the acts of designing.

Just as design cognition is starting to provide evidence-based support for computational studies, so cognitive neuroscience is starting to provide support for cognitive acts in designing.

Design thinking, the label given to the unique acts of designing, has become as paradigmatic view that has transcended the discipline of design and is now widely used in business and elsewhere. As a consequence there is an increasing interest in design research and government agencies are gradually increasing funding of design research, and increasing numbers of engineering schools are revising their curricula to emphasize design. This is because of the realization that design is part of the wealth creation of a nation and needs to be better understood and taught. The continuing globalization of industry and trade has required nations to re-examine where their core contributions lie if not in production efficiency. Design is a precursor to manufacturing for physical objects and is the precursor to implementation for virtual objects. At the same time, the need for sustainable
development is requiring design of new products and processes, and feeding a movement towards design innovations and inventions.

This conference series aims at providing a bridge between the fields of design computing and design cognition. The confluence of these two fields continues to provide the foundation for further advances in each of them.

The papers in this volume are from the Fourth International Conference on Design Computing and Cognition (DCC’10) held at the University of Stuttgart, Germany. They represent the state-of-the-art of research and development in design computing and design cognition. They are of particular interest to researchers, developers and users of advanced computation in design and those who need to gain a better understanding of designing.

In these proceedings the papers are grouped under the following nine headings, describing both advances in theory and application and demonstrating the depth and breadth of design computing and design cognition:

- Design Cognition
- Framework Models in Design
- Design Creativity
- Lines, Planes, Shape and Space in Design
- Decision-Making Processes in Design
- Knowledge and Learning in Design
- Using Design Cognition
- Collaborative/Collective Design
- Design Generation

There were 125 full paper submissions to the conference of which 38 were accepted. Each paper was extensively reviewed by three reviewers drawn from the international panel of 115 active reviewers listed on the next pages. The reviewers’ recommendations were then assessed before the final decision on each paper was taken. Thanks go to them, for the quality of these papers depends on their efforts.

Mercedes Paulini worked to turn the variegated submissions into the conference format to produce a unified volume, special thanks go to her.

July 2010

John S. Gero
Krasnow Institute for Advanced Study
Contents

Preface ... v

List of Reviewers .. xiii

Part I: Design Cognition

A Comparison of Cognitive Heuristics Use between Engineers and Industrial Designers .. 3
Seda Yilmaz, Shanna R. Daly, Colleen M. Seifert, Richard Gonzalez

Studying the Unthinkable Designer: Designing in the Absence of Sight ... 23
Ann Heylighen

Design Heuristics: Cognitive Strategies for Creativity in Idea Generation .. 35
Seda Yilmaz, Colleen M. Seifert, Richard Gonzalez

An Anthropo-Based Standpoint on Mediating Objects: Evolution and Extension of Industrial Design Practices 55
Catherine Elsen, Françoise Darses, Pierre Leclercq

Part II: Framework Models in Design

Beyond the Design Perspective of Gero’s FBS Framework 77
Gaetano Cascini, Luca Del Frate, Gualtiero Fantoni, Francesca Montagna

A Formal Model of Computer-Aided Visual Design 97
Ewa Grabska, Grażyna Ślusarczyk
Design Agents and the Need for High-Dimensional Perception 115
Sean Hanna

A Framework for Constructive Design Rationale .. 135
Udo Kannengiesser, John S. Gero

Part III: Design Creativity

The Curse of Creativity .. 157
David C. Brown

Enabling Creativity through Innovation Challenges: The Case of Interactive Lightning .. 171
Stefania Bandini, Andrea Bonomi, Giuseppe Vizzari, Vito Acconci

Facetwise Study of Modelling Activities in the Algorithm for Inventive Problem Solving ARIZ and Evolutionary Algorithms ... 189
Céline Conrardy, Roland de Guio, Bruno Zuber

Exploring Multiple Solutions and Multiple Analogies to Support Innovative Design .. 209
Apeksha Gadwal, Julie Linsey

Hiroshi Hasegawa, Yuki Sonoda, Mika Tsukamoto, Yusuke Sato

Part IV: Line, Plane, Shape, Space in Design

Line and Plane to Solid: Analyzing Their Use in Design Practice through Shape Rules .. 251
Gareth Paterson, Chris Earl

Interactions between Brand Identity and Shape Rules .. 269
Rosidah Jaafar, Alison McKay, Alan de Pennington, Hau Hing Chau

Approximate Enclosed Space Using Virtual Agent 285
Aswin Indraprastha, Michihiko Shinozaki

Associative Spatial Networks in Architectural Design: Artificial Cognition of Space Using Neural Networks with Spectral Graph Theory .. 305
John Harding, Christian Derix
Part V: Decision-Making Processes in Design

Comparing Stochastic Design Decision Belief Models: Pointwise versus Interval Probabilities
Peter C. Matthews
327

A Redefinition of the Paradox of Choice
Michal Piasecki, Sean Hanna
347

Rethinking Automated Layout Design: Developing a Creative Evolutionary Design Method for the Layout Problems in Architecture and Urban Design
Sven Schneider, Jan-Ruben Fischer, Reinhard König
367

Applying Clustering Techniques to Retrieve Housing Units from a Repository
Álvaro Sicilia, Leandro Madrazo, Mar González
387

Part VI: Knowledge and Learning in Design

Different Function Breakdowns for One Existing Product: Experimental Results
Thomas Alink, Claudia Eckert, Anne Ruckpaul, Albert Albers
405

A General Knowledge-Based Framework for Conceptual Design of Multi-disciplinary Systems
Yong Chen, Ze-Lin Liu, You-Bai Xie
425

Learning Concepts and Language for a Baby Designer
Madan Mohan Dabbeeru, Amitabha Mukerjee
445

Organizing a Design Space of Disparate Component Topologies
Mukund Kumar, Matthew I. Campbell
465

Part VII: Using Design Cognition

Imaging the Designing Brain: A Neurocognitive Exploration of Design Thinking
Katerina Alexiou, Theodore Zamenopoulos, Sam Gilbert
489
A Computational Design System with Cognitive Features Based on Multi-objective Evolutionary Search with Fuzzy Information Processing .. 505
Michael S. Bittermann

Narrative Bridging .. 525
Katarina Borg Gyllenbäck, Magnus Boman

Generic Non-technical Procedures in Design Problem Solving: Is There Any Benefit to the Clarification of Task Requirements? ... 545
Constance Winkelmann, Winfried Hacker

Virtual Impression Networks for Capturing Deep Impressions . 559
Toshiharu Taura, Eiko Yamamoto, Mohd Yusof Nor Fasiha, Yukari Nagai

Part VIII: Collaborative/Collective Design

Scaling Up: From Individual Design to Collaborative Design to Collective Design ... 581
Mary Lou Maher, Mercedes Paulini, Paul Murty

Building Better Design Teams: Enhancing Group Affinity to Aid Collaborative Design .. 601
Michael A. Oren, Stephen B. Gilbert

Measuring Cognitive Design Activity Changes during an Industry Team Brainstorming Session 621
Jeff W.T. Kan, John S. Gero, Hsien-Hui Tang

Part IX: Design Generation

Interactive, Visual 3D Spatial Grammars 643
Frank Hoisl, Kristina Shea

A Graph Grammar Based Scheme for Generating and Evaluating Planar Mechanisms ... 663
Pradeep Radhakrishnan, Matthew I. Campbell

A Case Study of Script-Based Techniques in Urban Planning ... 681
Anastasia Koltsova, Gerhard Schmitt, Patrik Schumacher, Tomoyuki Sudo, Shipra Narang, Lin Chen
Complex Product form Generation in Industrial Design: A Bookshelf Based on Voronoi Diagrams 701
Axel Nordin, Damien Motte, Andreas Hopf, Robert Bjärnemo, Claus Christian Eckhardt

A Computational Concept Generation Technique for Biologically-Inspired, Engineering Design 721
Jacquelyn K.S. Nagel, Robert B. Stone

First Author Email Address .. 741

Author Index ... 743
List of Reviewers

Henri Achten, Czech Technical University, Czech Republic
Tom Arciszewski, George Mason University, USA
Uday Athavankar, IIT Bombay, India
Petra Badke-Schaub, TU Delft, Netherlands
Stefanie Bandini, University of Milano-Bicocca, Italy
Adelaida Blavier, University of Liege, Belgium
Lucienne Blessing, University of Luxembourg, Luxembourg
Frances Brazier, TU Delft, Netherlands
Dave Brown, Worcester Polytechnic Institute, USA
Jon Cagan, Carnegie Mellon University, USA
Luisa Caldas, Instituto Superior Técnico, Portugal
Hernan Casakin, Ariel University Center of Samaria, Israel
Amaresh Chakrabarti, Indian Institute of Science, India
Scott Chase, Aarlborg University, Denmark
Per Christiansson, Aarlborg University, Denmark
John Clarkson, University of Cambridge, UK
Mark Clayton, Texas A&M University, USA
Graham Coates, Durham University, UK
Nathan Crilly, University of Cambridge, UK
Umberto Cugini, Polytecnico Milan, Italy
Steve Culley, University of Bath, UK
Francoise Darses, CNRS, France
Bharat Dave, University of Melbourne, Australia
Bauke De Vries, TU Eindhoven, Netherlands
Ellen Do, Georgia Institute of Technology, USA
Andy Dong, University of Sydney, Australia
Jose Duarte, Instituto Superior Técnico, Portugal
Alex Duffy, University of Strathclyde, UK
Chris Earl, Open University, UK
Claudia Eckert, Open University, UK
Georges Fadel, Clemson University, USA
Susan Finger, CMU, USA
Gerhard Fischer, University of Colorado, USA
Xavier Fischer, ESTIA, France
Christian Freksa, University of Bremen, Germany
Gerhard Friedrich, University of Klagenfurt, Austria
Renate Fruchter, Stanford University, USA
Haruyuki Fujii, Tokyo Institute of Technology, Japan
Kikuo Fujita, Osaka University, Japan
John Gero, George Mason University, USA
Pablo Gervas, Universidad Complutense de Madrid, Spain
Ashok Goel, Georgia Institute of Technology, USA
Gabirella Goldschmidt, Technion, Israel
Andres Gomez De Silva, ITAM, Mexico
Mark Gross, Carnegie Mellon University, USA
David Gunaratnam, University of Sydney, Australia
Balan Gurumoorthy, Indian Institute of Science, India
Winfried Hacker, TU Dresden, Germany
John Haymaker, Stanford University, USA
Ann Heylighen, KU Leuvan, Belgium
Urs Hirschberg, TU Graz, Austria
Koichi Hori, University of Tokyo, Japan
Walter Hower, Albstadt-Sigmaringen Universit, Germany
Jan Yin, University of Southern California, USA
Leo Joskowicz, Hebrew University of Jerusalem, Israel
Richard Junge, Technical University of Munich, Germany
Julie Jupp, University of Technology Sydney, Australia
Jeff Kan, Taylor’s University College, Malaysia
Udo Kannengiesser, NICTA, Australia
Yong Se Kim, Sungkyunkwan University, Korea
Terry Knight, MIT, USA
Branko Kolarevic, University of Calgary, Canada
Maria Kozhevnikov, George Mason University, USA
Ramesh Krishnamurti, Carnegie Mellon University, USA
Bimal Kumar, Glasgow Caledonian University, UK
Pierre Leclercq, University of Liege, Belgium
John Lee, University of Edinburgh, UK
Noel Leon, ITESM, Mexico
Andrew Li, Chinese University of Hong Kong, China
Hod Lipson, Cornell University, USA
Peter Lloyd, Open University, UK
Ardeshir Mahdavi
Mary Lou Maher, University of Sydney, Australia
Bob Martens, Technical University of Vienna, Austria
Janet McDonnell, University of the Arts - London, UK
Alison McKay, University of Leeds, UK
Harald Meerkamm, University Erlangen-Nuremberg, Germany
Anja Meier, Cambridge University, UK
Douglas Noble, University of Southern California, USA
Rivka Oxman, Technion, Israel
Panos Paplambros, University of Michigan, USA
Rafael Perez y Perez, UNAM, Mexico
Rabee Reffat, KFUPM, Saudi Arabia
Yoram Reich, Tel Aviv University, Israel
Duska Rosenberg, RHUL, UK
Stephan Rudolph, University of Stuttgart, Germany
Somwrita Sarkar, University of Sydney, Australia
Gerhard Schmitt, ETH Zurich, Switzerland
Chris Schunn, University of Pittsburgh, USA
Kristi Shea, TU Munich, Germany
Li Shu, University of Toronto, Canada
Greg Smith, CSIRO, Australia
Steve Smith, Texas A&M University, USA
Tim Smithers, Fatronik, Spain
Ricardo Sosa, ITESM, Mexico
Ram Sriram, NIST, USA

Martin Stacey, de Mountford University, UK
Rudi Stouffs, Technical University of Delft, Netherlands
Masaki Suwa, Keio University, Japan
Hsien-Hui Tang, National Taiwan University of Science and Technology, Taiwan
Ming Xi Tang, Hong Kong Polytechnic University, China
Toshiharu Taura, Kobe University, Japan
Jan Treur, Vrije Universiteit Amsterdam, Netherlands
Barbara Tversky, Columbia University, USA
Andrew Vande Moere, University of Sydney, Australia
Noe Varga-Hernandez, University of Texas El Paso, USA
Willemien Visser, INRIA, France
Christian Weber, Ilmenau University of Technology, Germany
Rob Woodbury, Simon Fraser University, Canada