Molecular Basis of Health and Disease
Molecular Basis of Health and Disease
To
My Wife Lakshmi
and
Daughter Arundhati, Son Aditya
and Son-in-Law Dr. Kalasagar Madugula
Several studies have suggested that low-grade systemic inflammation plays a significant role in the pathogenesis of obesity, insulin resistance, essential hypertension, type 2 diabetes, atherosclerosis, coronary heart disease, metabolic syndrome, dyslipidemia, lupus, rheumatoid arthritis and other autoimmune diseases, schizophrenia, depression, Alzheimer’s disease and cancer. This is supported by the observation that plasma C-reactive protein (CRP), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6), markers of inflammation, levels are elevated in these subjects.

With ageing, plasma levels of CRP, IL-6 and TNF-α tend to increase and produce insulin resistance and secondary hyperinsulinemia. Alzheimer’s disease, schizophrenia, and depression are also associated with an increase in plasma and cerebrospinal fluid CRP, IL-6, TNF-α, and lipids peroxides. In all these conditions, similar, if not identical, changes in the plasma, RBC, and tissue concentrations of polyunsaturated fatty acids and anti-oxidants have been described. Similarity in the molecular events at the cellular level suggest that methods designed to suppress inappropriate inflammation and augment resolution of inflammation and tissue repair could be of therapeutic benefit in these conditions.

In this context, it is of particular significance that alterations in the metabolism of essential fatty acids and the formation of their anti-inflammatory metabolites such as lipoxins, resolvins, protectins, maresins and nitrolipids seem to be responsible for the onset of low-grade systemic inflammation in these diseases. In view of this understanding the factors and co-factors, both endogenous and exogenous, that have the ability to modulate the metabolism of essential fatty acids and the formation of their anti-inflammatory products is important. Since these anti-inflammatory lipid compounds suppress the production of pro-inflammatory eicosanoids, it appears that a disturbed balance between these pro- and anti-inflammatory products of polyunsaturated fatty acids play a significant role in the pathobiology of several adult diseases.

This is particularly relevant to the pathobiology of the metabolic syndrome that has been attributed to lack of exercise, increase in the consumption of energy-dense food and environmental changes. It is likely that insulin resistance, low-grade systemic inflammation, low-birth weight (especially in the Indian sub-continent), maternal malnutrition (both over and under-nutrition), perinatal and early childhood high
carbohydrate and saturated fat diet and low polyunsaturated fatty acid intake could be responsible for this disease.

There is reasonable evidence to suggest that obesity, insulin resistance, type 2 diabetes mellitus, hypertension which are all the components of the metabolic syndrome, may occur as a result of dysfunction of specific hypothalamic nuclei and their peptide and monoaminergic neurotransmitters, an issue that needs due attention.

Human brain is rich in polyunsaturated fatty acids (PUFAs) and so they are likely to play a significant role in the pathogenesis of the metabolic syndrome, neurological conditions such as Alzheimer’s disease, schizophrenia and depression.

PUFAs play a significant role in brain growth and development, modulate the actions of various neurotransmitters that have an important role in the pathobiology of the metabolic syndrome and Alzheimer’s disease, schizophrenia and depression suggesting that perinatal supplementation of PUFAs could be of significant help in the prevention of these diseases since brain development occurs predominantly during the second and third trimester of pregnancy and first 5 years of life. Thus, metabolic syndrome could be a disorder of the brain. This explains why breast fed subjects have low incidence of these diseases since human breast milk is rich in PUFAs.

Vagus nerve has a regulatory role in insulin secretion, modulates inflammation, influences the levels of (BDNF) brain-derived neurotrophic factor and its stimulation increases the secretion of incretins from the gut, suggesting that vagus nerve stimulation could exploited in the treatment of insulin resistance, type 2 diabetes mellitus and metabolic syndrome and Alzheimer’s disease, schizophrenia and depression; in addition to its already established role in the treatment of resistant epilepsy.

Cancer is also a low-grade systemic inflammatory condition. Some PUFAs selectively kill tumor cells without harming normal cells. Hence, it is possible to use monoclonal antibodies against growth factors that are complexed with PUFAs in the treatment of cancer. Thus, a combination of PUFAs, BDNF, vagus nerve stimulation, and other strategies could be adopted to prevent and manage several adult diseases.

I trust that several of new concepts proposed in this book would interest many scientists and encourage them to test them out.

Shaker Heights, OH

Undurti N. Das
About the Author

Undurti N. Das is an M.D. in Internal Medicine from Osmania Medical College, India; a Fellow of the National Academy of Medical Sciences, India, and Shanti Swaroop Bhatnagar prize awardee. His current interests include the epidemiological aspects of diabetes mellitus, hypertension, CVD and metabolic syndrome. Dr. Das was formerly a scientist at Efamol Research Institute, Kentville, Canada; Professor of Medicine at Nizam’s Institute of Medical Sciences, India and Research Professor of Surgery and Nutrition at SUNY (State University of New York) Upstate Medical University, Syracuse, USA. At present, he is the Chairman and Research Director of UND Life Sciences, USA. Dr. Das is also the Editor-in-Chief of: Lipids in Health and Disease. Dr. Das has more than 400 international publications and has been awarded 4 USA patents. Dr. Das is in receipt of Ramalingaswami Fellowship of the Department of Biotechnology of India during the tenure of writing this book. Previous books by Dr. U N Das include: A Perinatal Strategy for Preventing Adult Disease: The Role of Long-Chain Polyunsaturated Fatty Acids, Kluwer Academic Press, 2002; and Metabolic Syndrome Pathophysiology: The Role of Essential Fatty Acids, Wiley-Blackwell, 2010. Address: UND Life Sciences, 13800 Fairhill Road, #321, Shaker Heights, OH 44120, USA, Tel.: +1-216-231-5548, Fax: +1-928-833-0316, e-mail: Undurti@hotmail.com; School of Biotechnology, Jawaharlal Nehru Technological University, Kakinada 533003, India
Contents

1 **Introduction** ... 1
Measuring Health and Disease .. 2
Is There a Better Definition of Health? 5
Determinants of Health ... 6
Maintaining Health .. 6
Observations of Daily Living 6
Social Activity .. 6
Hygiene ... 7
Stress Management .. 7
Health Care .. 7
Workplace Wellness Programs 7
Public Health ... 8
Role of Science in Health .. 9
Applied Health Sciences ... 9

2 **Health and Disease as Two Sides of the Same Coin** 11
Low-Grade Systemic Inflammation Occurs in Many Diseases 11

3 **Inflammation** .. 15
Introduction .. 15
Phases of Inflammatory Response 16
Components of Acute Inflammation 17
 Vascular Changes ... 18
 Cellular Events ... 23
Mediators of Inflammation 34
 Histamine ... 35
 Serotonin .. 37
Effects of Food Content .. 40
Location of Serotonergic Neurons 42
5-HT Receptors .. 42
Serotonylation .. 43
Biosynthesis of Serotonin 43
Drugs Targeting the 5-HT System .. 43
Serotonin Modulates Inflammation and Immune Response 44
 Dopamine ... 45
 Catecholamines 46
Acetylcholine .. 48
Melanocortin .. 48
Leptin .. 49
Neuropeptide Y ... 50
Ghrelin ... 51
Gut Peptides .. 53
Cholecystokinin .. 54
 Kinins ... 56
Essential Fatty Acids and Their Products 58
Cyclo-oxygenase (COX), Lipoxygenase (LO) Pathways and Generation of Lipoxins, Resolvins, Protectins and Maresins 59
Aspirin-triggered 15 Epimer LXs (ATLs) and Resolvins and Formation of Protectins and Maresins 62
Platelet Activating Factor (PAF) 63
Cytokines in Inflammation 65
Chemokines in Inflammation 66
Nitric Oxide (NO) .. 67
NO is an Endogenous Anti-infective Molecule 69
NO and Cellular Senescence 70
NO and Brain-derived Neurotrophic Factor (BDNF) 71
Leukocyte Lysosomal Enzymes 72
Reactive Oxygen Species (ROS) 73
Neuropeptides in Inflammation 74
 Obesity, type 2 diabetes, hypertension, hyperlipidemia, insulin resistance, Alzheimer’s disease, depression, schizophrenia and cancer are low-grade systemic inflammatory conditions ... 74
Diagnosis of Low-grade Systemic Inflammation 76
Hs-CRP ... 76
Cytokines and Chemokines 77
Conventional Markers of Inflammation 78
Role of Pro-inflammatory Markers in the Pathophysiology of the Low-grade Systemic Inflammatory Conditions 78
4 Essential Fatty Acids—Biochemistry, Physiology and Clinical Significance ... 101
Introduction .. 101
Metabolism of EFAs 102
 The n-6 Polyunsaturated Fatty Acids 102
 The n-3 Polyunsaturated Fatty Acids 105
Dietary Sources of EFAs 109
The Activities of Δ^6 and Δ^5 Desaturases Are Low in Humans 110
Modulators of EFAs/PUFAs Metabolism .. 111
Protein and Insulin Augment Δ^6 Desaturase Activity 111
Ageing and Season Influence Δ^6 Desaturase Activity 112
Oncogenic Viruses, Radiation, SREBP and PPARs Influence
EFA Metabolism .. 112
Statins Enhance EFA Metabolism .. 113
Trans-fats, Saturated Fats and Cholesterol Inhibit
Δ^6 Desaturase .. 113
Zinc Modifies EFA and PG Metabolism 114
Magnesium is an Essential Co-factor for Normal Δ^6 Desaturase .. 115
Calcium Enhances PGI$_2$ Synthesis and Interacts with PUFAs 116
Vitamin C and Ethanol Enhance the Formation of PGE$_1$ 117
Actions of EFAs/PUFAs and Their Metabolites 117
Cell Membrane Fluidity .. 117
EFAs/PUFAs Have Second Messenger Actions 119
PUFAs Behave as Endogenous Anti-infective Molecules 120
PUFAs Inhibit ACE Activity and Enhance Endothelial
Nitric Oxide Generation .. 122
PUFAs and Cytokines .. 124
PUFAs Decrease HMG-CoA Reductase Activity 126
Lipoxins, Resolvins, Protectins and Maresins 127
NO Reacts with PUFAs to Yield Nitrolipids 129
Formation of Nitro Fatty Acids (Nitrolipids) in Tissues 134
Actions of Nitro Fatty Acids (Nitrolipids) 136
Interaction(s) Among n-3, n-6 Fatty Acids, NO and Nitrolipids 138

5 Cell Membrane Organization .. 153
Introduction .. 153
Fluid Mosaic Model of the Membrane 153
The Phospholipid (PL) Bilayer—Its Structure, Properties
and Functions ... 154
Cell Membrane Properties 158
Integral Membrane Proteins 159
Cell Membrane-Cytoskeleton Integration 159
Cell Membrane Lipids 160
Plasma Membrane Carbohydrates 161
Plasma Membrane Proteins 161
Cell Membrane Permeability 162
Lipid Rafts, Caveolae and Polyunsaturated Fatty Acids (PUFAs) .. 166

6 Low-grade Systemic Inflammation is Present in Common
Diseases/Disorders ... 175
Introduction .. 175
Low-grade Systemic Inflammation is Present in Chronic
Diseases .. 177
7 Obesity

Definition of Obesity .. 182

Incidence and Prevalence of Obesity 182

Obesity May Be Familial ... 183

Fast Food Industry and Obesity 183

Obesity Is Harmful .. 184

Genetic and Non-genetic Factors Contributing to Obesity 185

Gene Expression Profile in Obesity 186

All Adipose Cells are Not the Same 187

Biochemical and Functional Differences Between Adipose Cells of Different Regions .. 188

Intramyocellular Lipid (IMCL) Droplets and Perilipins 189

Perilipins and Inflammation 189

Low Grade Systemic Inflammation Occurs in Obesity 190

Weight Loss Ameliorates Inflammation 192

Adipose Tissue Macrophages (ATMs) and Inflammation 193

Macrophage Differentiation Is Dependent on Fatty Acid Synthesis .. 194

Fatty Acid Metabolism Enhances T Cell Memory 195

What Causes Abdominal Obesity—How and Why? 198

Excess 11β-hydroxysteroid Dehydrogenase Type 1 (11β-HSD-1) Enzyme Activity May Cause Abdominal Obesity 198

Interaction Among 11β-HSD-1, TNF-α and Insulin 199

Glucocorticoids and Perilipins 201

Glucocorticoids, TNF-α, and Inflammation 202

Diet, Genetics, Inflammation and Obesity 203

Gut and Obesity .. 205

Perinatal Nutritional Environment Influences Development of Obesity .. 206

Obesity and Type 2 Diabetes Mellitus as Disorders of the Brain 206

Cross-Talk Between the Liver, Adipose Tissue and the Brain Through Vagus ... 207

Cross-Talk Between the Liver and Pancreatic β Cells is Mediated by the Vagus .. 207

The Gut-Brain-Liver Axis Circuit is Activated by Long-Chain Fatty Acids .. 208

BDNF and Obesity .. 211

Interaction(s) Among Insulin, Melanocortin, and BDNF 212

Ghrelin, Leptin, and BDNF ... 213

Obesity and Type 2 Diabetes Mellitus Are Inflammatory Conditions 213

BDNF and Inflammation .. 214

Gut Bacteria and Obesity .. 215

Gut Flora ... 215

Gut Bacteria Are Different in the Lean and Obese 216

Gut Bacteria and GPR41 .. 217
Diet, Low-Grade Systemic Inflammation, and Obesity 219
Gastric Bypass Surgery for Obesity Alters Gut Bacteria
and Hypothalamic Factors .. 219
Insulin Acts Not only on Peripheral Tissues but Also in the Brain 220
Interaction Between PUFAs and BDNF and its Relationship to Obesity 221
Diet, Gut Peptides and Hypothalamic Neurotransmitters in Obesity 221

8 Hypertension .. 239
Introduction .. 239
Nutritional Factors in the Pathobiology of HTN 240
Interaction(s) Between Minerals, Trace Elements, Vitamins
and Essential Fatty Acids .. 241
Salt, Calcium, NO, and Hypertension 242
Asymmetrical Dimethylarginine and Hypertension 243
NO, ADMA and Oxidative Stress in Preeclampsia 243
VEGF, Endoglin, Placental Growth Factor, TGF-β,
Catechol-O-methyltransferase Activity and Preeclampsia 246
Homocysteine and Endothelial Damage 248
Nutritional Factors, Oxidant Stress and Endothelial Dysfunction .. 249
Increased Oxidant Stress Occurs in Hypertension 250
Superoxide Anion Production Is Increased in Hypertension:
How and Why? .. 251
Superoxide Anion and Hypertension 252
NO and Hypertension .. 252
Cyclosporine Increases Blood Pressure by Augmenting
O_2^- Generation .. 253
Anti-hypertensive Drugs Enhance eNO Synthesis and Show
Antioxidant Property .. 253
Transforming Growth Factor-β (TGF-β) in Hypertension 255
Essential Fatty Acids and Blood Pressure 256
Free Radicals, NO, ACE Activity and Essential Hypertension 257
Essential Fatty Acids and Hypertension 259
Low-grade Systemic Inflammation Occurs in Hypertension 262
Does Adult Hypertension have its Origins
in the Perinatal Period? ... 262

9 Insulin Resistance, Dyslipidemia, Type 2 Diabetes Mellitus
and Metabolic Syndrome ... 277
Introduction .. 277
Metabolic Syndrome ... 278
Metabolic Syndrome Is an Inflammatory Condition 279
Why Abdominal Obesity Occurs? 279
Glucose Is Pro-inflammatory in Nature 280
Insulin Is Anti-inflammatory in Nature 281
Endothelial Nitric Oxide in Metabolic Syndrome 281
Perinatal Origins of Metabolic Syndrome 284
Hypothalamic Neuropeptides and Food Intake 286
Appetite Regulatory Centers Are in Place During Perinatal Period and Fine-tuned/Programmed by Maternal and Perinatal Factors 286
Ventromedial Hypothalamus may have a Role in the Development of Type 2 Diabetes Mellitus 288
Insulin Receptors in the Brain and the Metabolic Syndrome 290
Mechanism of Action of Insulin Receptors in the Brain and Elsewhere 291
Insulin, GLUT-4 and Glucose Transport 297
Muscle-specific GLUT-4 Knockout Mice (MG4KO) 297
Fat-specific GLUT-4 Knockout Mice 299
PUFAs, Expression of Insulin Receptors and GLUTs and Diabetes Mellitus 300
Polygenic Knockout Models 302
Triple Heterozygous Knockouts (IR/IRS-1/p85) 302
Weight Loss After Gastric Bypass and Changes in Hypothalamic Neuropeptides and Monoamines 304
Monoaminergic Amines and Hypothalamic and Gut Peptides and Inflammation 305
Dopamine 305
Serotonin (5-hydroxytryptamine) 306
Neuropeptide Y 307
Ghrelin 308
Melanocortin 310
Acetylcholine 311
Adrenaline and Noradrenaline 311
Gut Peptides 312
Leptin 313
Cholecystokinin 314
Neurotransmitters and Gut Peptides as Modulators of Inflammation and Immune Response 315

10 Atherosclerosis 333
Introduction 333
Atherosclerosis Is a Low-grade Systemic Inflammatory Condition 334
Mediators of Inflammation in Atherosclerosis 335
Cross Talk Among Platelets, Leukocytes and Endothelial Cells 337
Lipoxins in Rheumatoid Arthritis 338
Leukocytes and Atherosclerosis 340
Uncoupling Protein-1, Essential Fatty Acids, and Atherosclerosis 341
11 Osteoporosis .. 359
 Introduction .. 359
 Dietary Protein and Osteoporosis 359
 Magnesium and Osteoporosis 361
 Osteoporosis Is a Low-grade Systemic Inflammatory Condition . 361
 Nitric Oxide in Osteoporosis 364
 Post-menopausal Osteoporosis, Cytokines and NO 366
 Dose Dependent Action of NO on Bone 366
 Anti-diabetic Drug Metformin, NO and Osteoporosis 368
 Polyunsaturated Fatty Acids and Osteoporosis 369

12 Alzheimer’s Disease, Schizophrenia and Depression 377
 Introduction .. 377
 Pathobiology of Alzheimer’s Disease 377
 Amyloid β in AD ... 379
 Oxidative Stress Causes Neuronal Death 379
 Alzheimer’s is an Inflammatory Condition 380
 Cholinergic System in Alzheimer’s Disease 381
 Neurotrophic Factors and AD 382
 PUFAs in Alzheimer’s Disease 384
 PUFAs and Neurogenesis and Neurite Outgrowth 385
 Interaction(s) Between PUFAs and BDNF 387
 Schizophrenia .. 390
 Prenatal and Perinatal Factors on Psychopathology 390
 Early Fetal Environment and Development and Schizophrenia 391
 Maternal Infections and Schizophrenia 392
 Is Schizophrenia an Inflammatory Condition? 393
 PUFAs and Their Metabolites and Schizophrenia 393
 Depression ... 395
 Depression May Be Associated with Low BDNF Levels 396
 BDNF and Serotonin Interact with Each Other 397
 BDNF and Inflammation .. 398
 Serotonin and Catecholamines Modulate Inflammation 399
 Depression is an Inflammatory Condition 399
 Depression and PUFAs .. 400
13 Rheumatological Conditions

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>417</td>
</tr>
<tr>
<td>Autoimmunity</td>
<td>418</td>
</tr>
<tr>
<td>Self and Non-self and Immunological Tolerance</td>
<td>418</td>
</tr>
<tr>
<td>Genetic Factors</td>
<td>419</td>
</tr>
<tr>
<td>Gender</td>
<td>420</td>
</tr>
<tr>
<td>Environmental Factors</td>
<td>422</td>
</tr>
<tr>
<td>Pathogenesis of Autoimmunity</td>
<td>423</td>
</tr>
<tr>
<td>Systemic Lupus Erythematosus</td>
<td>427</td>
</tr>
<tr>
<td>Pathobiology of Inflammation with Emphasis on Chronic Inflammation</td>
<td>428</td>
</tr>
<tr>
<td>Components and Mediators of the Inflammatory Response</td>
<td>429</td>
</tr>
<tr>
<td>Cytokines in Inflammation</td>
<td>431</td>
</tr>
<tr>
<td>Inflammatory and Anti-inflammatory Molecules</td>
<td>432</td>
</tr>
<tr>
<td>TGF-β in Scleroderma and Lupus</td>
<td>434</td>
</tr>
<tr>
<td>Immune Dysfunction in Lupus</td>
<td>434</td>
</tr>
<tr>
<td>Loss of Self-tolerance in Lupus</td>
<td>435</td>
</tr>
<tr>
<td>UV Radiation, Immune Response, Mast Cells and its Role in Lupus</td>
<td>438</td>
</tr>
<tr>
<td>Mast Cells in Rheumatological Conditions</td>
<td>439</td>
</tr>
<tr>
<td>PLA₂, TNF-α, MIF and Pro- and Anti-inflammatory Lipids</td>
<td>440</td>
</tr>
<tr>
<td>Glucocorticoids, COX Enzymes, LTs, Cytokines, NO, LXs, and Inflammation</td>
<td>444</td>
</tr>
<tr>
<td>Cell Membrane Fatty Acid Content Could Modulate Inflammation and Repair</td>
<td>448</td>
</tr>
<tr>
<td>Nitric Oxide, Lipid Peroxides, and Antioxidant Status in Lupus</td>
<td>449</td>
</tr>
<tr>
<td>Oxidant Stress, Anti-oxidants, NO and PUFAs in Lupus</td>
<td>450</td>
</tr>
<tr>
<td>1,25-dihydroxyvitamin D₃ Suppresses Autoimmunity</td>
<td>451</td>
</tr>
<tr>
<td>ADMA is Useful in Lupus and Other Rheumatological Conditions</td>
<td>452</td>
</tr>
</tbody>
</table>

14 Cancer

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tobacco and Cancer</td>
<td>465</td>
</tr>
<tr>
<td>Infection and Cancer</td>
<td>466</td>
</tr>
<tr>
<td>Tobacco and Inflammation</td>
<td>466</td>
</tr>
<tr>
<td>Inflammation of Chronic Infections and Cancer are due to TNF-α and IL-1</td>
<td>468</td>
</tr>
<tr>
<td>Glucose Sensing by Neuronal and Tumor Cells and Its Relationship to ATP-Sensitive K⁺ Channels and ROS</td>
<td>470</td>
</tr>
<tr>
<td>Eicosanoids, Free Radicals and Inflammation in Cancer</td>
<td>473</td>
</tr>
<tr>
<td>PUFAs, Pro- and Anti-inflammatory Metabolites of PUFAs and Lipid Peroxidation and Cancer</td>
<td>474</td>
</tr>
<tr>
<td>Free Radicals Have both Beneficial and Harmful Actions</td>
<td>475</td>
</tr>
<tr>
<td>Lipid Peroxidation in Tumor Cells</td>
<td>476</td>
</tr>
</tbody>
</table>
Contents

15 Aging

16 Adult Diseases and Low-Grade Systemic Inflammation Have Their Origins in the Perinatal Period

PUFA Deficiency Exists in Tumor Cells .. 476
Superoxide Dismutase and Free Radicals in Tumor Cells 477
Free Radicals Induce Translocation of p53 478
Oxidant Stress and Telomere .. 479
Bcl-2 Opposes the Action of p53 .. 479
Polyunsaturated Fatty Acids Inhibit Cell Proliferation by Augmenting Free Radical Generation and Lipid Peroxidation 480
Normal and Tumor Cells May Process PUFAs Differentially 481

15 Aging

Introduction ... 491
Telomere and Aging .. 492
Telomere and Aging .. 492
Telomere and Aging .. 493
Telomere in Type 2 Diabetes Mellitus 495
Telomere and Hypertension ... 497
Endothelial Dysfunction, Insulin Resistance, Obesity, Hypertension, Type 2 Diabetes, Inflammation and Telomere 498
PUFAs and Their Anti-inflammatory Products and Telomere 499
P53, Telomere, Aging, Type 2 Diabetes Mellitus, Cancer 500
Other Theories of Aging .. 504
Aging is a Low-grade Systemic Inflammatory Condition 504
Exercise is Anti-inflammatory in Nature 506

16 Adult Diseases and Low-Grade Systemic Inflammation Have Their Origins in the Perinatal Period

Introduction ... 513
When and How the Inflammatory Process is Initiated? 515
Perinatal Programming of Adult Diseases 515
Factors Influencing the Metabolism of EFAs 516
PUFAs Modulate Glucose and Glutamine Uptake and Their Metabolism ... 517
PUFAs, Insulin, and Acetylcholine Function as Endogenous Cyto- and Neuroprotectors ... 519
PUFAs in Brain Growth and Development 521
Syntaxin, SNARE Complex and PUFAs 521
PUFAs Modulate RAR-RXR and Other Nuclear Receptors and are Essential for Brain Growth and Development 522
PUFAs Modulate Gene Expression and Interact with Cytokine TNF-α and Insulin to Influence Neuronal Growth and Synapse Formation ... 525
Neurogenesis and Neuronal Movement During the Growth and Development of Brain and PUFAs .. 527
Insulin, PUFAs and Neuronal Proliferation 528
Catenin, wnt and Hedgehog Signaling Pathway in Brain Growth and Development and PUFAs ... 529
PUFAs Modulate NMDA, \(\gamma\)-Aminobutyric Acid (GABA), Serotonin and Dopamine in the Brain ... 532
Maternal Diet Influences EFA Metabolism and Leptin Levels 536
Perinatal PUFA Deficiency May Initiate Low-Grade Systemic Inflammation and Adult Diseases .. 537

17 Clinical Implications .. 551
Introduction .. 551
Glucose-Insulin-Potassium Regimen ... 552
Ethyl Pyruvate .. 555
Lipid-enriched Albumin .. 556
Vagal Nerve Stimulation (VNS) Suppresses Inflammation 558
VNS for Obesity, Hypertension, Type 2 Diabetes Mellitus and Metabolic Syndrome ... 559
Lipoxins, Resolvins, Protectins or Their Synthetic Analogues 562
Ghrelin ... 563
PUFAs as Potential Anti-cancer Drugs .. 563
PUFAs, Especially GLA, for Glioma ... 565
Modified GLA (and Other PUFAs) for Cancer 566
PUFAs+Growth Factors for Cancer ... 567
PUFAs for Rheumatological Conditions 568

Index ... 575