Power Systems
Advanced
Electrical Drives

Analysis, Modeling, Control

Springer
In memory of Prof. A. J. A. Vandenput
who has inspired the authors.
Foreword

The value of a textbook is largely determined by how well its structure supports the reader in mastering the depth and breadth of the intended subject. This textbook provides a structure that can achieve that goal for engineers seeking to master key technologies for a wide range of advanced electrical drives.

To achieve that goal it wisely places very significant, but common background material in the early chapters, where it introduces the core topologies of power converters and the key issues needed to understand and apply practical power electronic converters. It also lays a sound foundation for understanding the two fundamental approaches for current regulators: hysteresis control and model-based control. By providing a sound and detailed background on power converters and current regulators, the rest of the text is able to focus on the advanced electrical drive concepts that are unique to the major classes of machines: DC, AC synchronous machines, AC induction machines, and switched reluctance machines.

Common structures are used to great advantage. To develop a common basis for modeling and control, the machines that are predominately Lorentz force machines, i.e. the DC, AC synchronous, and AC induction (asynchronous) machines are all modeled using an ideal rotating transformer. By first applying it to the DC machine, the link to AC machines is very clear. Common modules are used to provide uniformity in the discussion between the various machine types and to be directly compatible with a simulation modeling environment. A similar structure is extensively used for the controls modules that follow the machine modules.

The text’s separation of machine modeling from drive control is very helpful. Machine modeling lays a foundation such the controls can logically sequence from classical to advanced drive methodologies. The inclusion of both surface and interior permanent magnet synchronous machines is particularly relevant since those machines are beginning to dominate many applications. The significant treatment of field weakening operation is also critical. The inclusion of limits such as maximum current, maximum flux, maximum torque
per flux, and maximum torque per ampere make the range of operation of the
machine drives very transparent. The universal field-oriented control struc-
ture is aptly used to unify the subsequent presentation of indirect and direct
field orientation control methods.

A very clear transition is made from predominately Lorentz force-based
machines to purely reluctance torque-based machines. The detailed modeling
and evaluation of switched reluctance machines allows drives engineers to cor-
rectly model the inherently pulsating torque that each phase provides. The
treatment of saturation and its affect on power conversion leads nicely into
evaluation of drives with these properties. By including a rigorous discussion
of classical hysteresis current control and multi-phase direct instantaneous
torque control, the reader can appreciate the structure needed for high per-
formance control of torque in switched reluctance drives.

Throughout the text, extensive tutorials tie modules that codify key con-
cepts in the theory, to their implementation in a simulation environment.
This makes it possible for the reader to quickly explore details and develop
confidence in their mastery of major concepts for advanced electrical drives.

By following the approach of this book, I believe that advanced drive
engineers will be able to develop depth and breadth that is not normally
easy to achieve.

Madison, Wisconsin, U.S.A. Robert D. Lorenz
Preface

Mastering the synergy of electromagnetics, control, power electronics and mechanical concepts remains an intellectual challenge. Nevertheless, this barrier must be overcome by engineers and senior students who have a need or desire to comprehend the theoretical and practical aspects of modern electrical drives. In this context, the term drive represents a plethora of motion control systems as present in industry.

This book Advanced Electrical Drives builds on basic concepts outlined in the book Fundamentals of Electrical Drives by the same authors. Hence, it is prudent for the uninitiated reader to consider this material prior to tackling the more advanced material presented in this text. Others well versed in the basic concepts of electrical drives should be able to readily assimilate the material presented as every effort has been made to ensure that the material presented can be mastered without the need to continually switch between the books.

In our previous work, the unique concept of an ideal rotating transformer (IRTF), as developed by the authors, was introduced to facilitate the basic understanding of torque production in electrical machines. The application of the IRTF module to modern electrical machines as introduced in Fundamentals of Electrical Drives is fully explored in this volume and as such allows the user to examine a range of unique dynamic and steady-state machine models which covers brushed DC, non-salient/salient synchronous and induction machines.

In addition, this volume explains the universal field oriented (UFO) concept which demonstrates the concepts of modern vector control and exemplifies the seamless transition between so-called stator flux and rotor flux oriented control techniques. This powerful tool is used for the development of flux oriented machine models of rotating field machines. These models form the basis of UFO vector control techniques which are covered extensively together with traditional drive concepts. In the last sections of this book, attention is given to the dynamic modeling of switched reluctance (SR)
drives, where a comprehensive set of modeling tools and control techniques are presented which are complemented by a set of build and play modules.

As with the previous book, the interactive learning process using build and play modules is continued. Again the simulation tool CASPOC is used which contains a tailored set of modules which bring to life the circuit and generic models introduced in the text. This approach provides the reader with the opportunity to interactively explore and fully comprehend and visualize the concepts presented in this text. For this purpose, realtime modules which allow the reader to view the simulations without further software licensing needs are provided on the Springer website (http://extras.springer.com).

The text Advanced Electrical Drives should appeal to the readers in industry and universities who have a desire or need to understand the intricacies of modern electrical drives without loosing sight of the fundamental principles. The book brings together the concepts of IRTF and UFO which allows a comprehensive and insightful analysis of AC electrical drives in terms of modeling and control. Particular attention is also given to switched reluctance drives modeling methods and modern control techniques. Extensive use is made of build and play modules in this book which for the first time provides the user with the ability to interactively examine and understand the topics present in this book.

Aachen, Germany
Aachen, Germany
Culemborg, Netherlands

Rik De Doncker
Duco W. J. Pulle
André Veltman
Acknowledgements

That this work has come to fruition stems from a deep belief that the material presented in this book will be of profound value to the educational institutions and the engineering community as a whole. In particular, the fast but accurate simulations that accompany the tutorials provide a new way of learning that is highly interactive, so that they may stimulate creativity of students and experts alike by virtue of virtual experiments.

The content of this book reflects on the collective academic and industrial experience of the authors and co-workers. In this context, the inputs of students and research associates cannot be overestimated. The authors wish to acknowledge the staff at the Institute for Power Electronics and Electrical Drives (ISEA) of RWTH Aachen University. In particular, the authors would like to thank (in alphabetical order) Matthias Bösing, Christian Carstensen, Martin Hennen, Knut Kasper, Markus Kunter, Christoph Neuhaus, and Daniel van Treek for their contribution over the last three years. We would also like to thank Paul van der Hulst of Piak Electronic Design b.v., Culemborg, Netherlands, for supporting the final editing work and providing many good suggestions. Furthermore, the simulation tools that support the tutorials would not have been possible without the generous support of Peter van Duijzen of Simulation-Research, Alphen aan den Rijn, Netherlands, to support and make available to the readers of this book all CASPOC simulations. The experimental setup used to validate and demonstrate the algorithms was supported by AixControl GmbH, Aachen, Germany. The authors are grateful to the American University of Sharjah, United Arab Emirates, for supporting a working visit to RWTH Aachen University.
Contents

1 Modern Electrical Drives: An Overview 1
 1.1 Introduction ... 1
 1.2 Drive Technology Trends 3
 1.2.1 Electrical Machines 3
 1.2.2 Power Converters 6
 1.2.3 Embedded Control and Communication Links 8
 1.3 Drive Design Methodology 11
 1.4 Experimental Setup 13

2 Modulation Techniques for Power Electronic Converters 17
 2.1 Introduction ... 17
 2.2 Single-Phase Half-Bridge Converter 19
 2.3 Single-Phase Full-Bridge Converter 23
 2.4 Three-Phase Converter 28
 2.4.1 Space Vector Modulation 33
 2.5 Dead-Time Effects 38
 2.6 Tutorials ... 41
 2.6.1 Tutorial 1: Half-Bridge Converter with Pulse Width Modulation .. 41
 2.6.2 Tutorial 2: Half-Bridge Converter with PWM and Dead-Time Effects 43
 2.6.3 Tutorial 3: Full-Bridge Converter with Pulse Width Modulation .. 45
 2.6.4 Tutorial 4: Three-Phase Pulse Width Modulator with Pulse Centering 47
 2.6.5 Tutorial 5: Three-Phase Converter with Pulse Width Modulator .. 49
 2.6.6 Tutorial 6: Three-Phase Simplified Converter without PWM ... 51
3 Current Control of Generalized Load

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Current Control of Single-Phase Load</td>
<td>55</td>
</tr>
<tr>
<td>3.1.1 Hysteresis Current Control</td>
<td>55</td>
</tr>
<tr>
<td>3.1.2 Model Based Current Control</td>
<td>58</td>
</tr>
<tr>
<td>3.1.3 Augmented Model Based Current Control</td>
<td>63</td>
</tr>
<tr>
<td>3.2 Current Control of a Three-Phase Load</td>
<td>64</td>
</tr>
<tr>
<td>3.2.1 Three-Phase Hysteresis Current Control</td>
<td>67</td>
</tr>
<tr>
<td>3.2.2 Model Based Three-Phase Current Control</td>
<td>73</td>
</tr>
<tr>
<td>3.2.3 Augmented Three-Phase Model Based Current Control</td>
<td>80</td>
</tr>
<tr>
<td>3.2.4 Frequency Spectrum of Hysteresis and Model Based Current Controllers</td>
<td>81</td>
</tr>
<tr>
<td>3.3 Tutorials</td>
<td>83</td>
</tr>
<tr>
<td>3.3.1 Tutorial 1: Single-Phase Hysteresis Current Control</td>
<td>83</td>
</tr>
<tr>
<td>3.3.2 Tutorial 2: Single-Phase Model Based Current Control</td>
<td>84</td>
</tr>
<tr>
<td>3.3.3 Tutorial 3: Three-Phase Box Method Type Hysteresis Current Control</td>
<td>86</td>
</tr>
<tr>
<td>3.3.4 Tutorial 4: Three-Phase Model Based Current Control</td>
<td>89</td>
</tr>
<tr>
<td>3.3.5 Tutorial 5: Three-Phase Model Based Current Control without PWM, Using Simplified Approach</td>
<td>92</td>
</tr>
</tbody>
</table>

4 Drive Principles

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 ITF and IRTF Concepts</td>
<td>95</td>
</tr>
<tr>
<td>4.2 Electromagnetic Torque Control Principles</td>
<td>100</td>
</tr>
<tr>
<td>4.2.1 DC Machine</td>
<td>101</td>
</tr>
<tr>
<td>4.2.2 Synchronous Machine</td>
<td>103</td>
</tr>
<tr>
<td>4.2.3 Induction Machine</td>
<td>106</td>
</tr>
<tr>
<td>4.3 Drive Dynamics</td>
<td>108</td>
</tr>
<tr>
<td>4.3.1 Linear and Rotational Motion</td>
<td>109</td>
</tr>
<tr>
<td>4.3.2 Rotational to Translational Transmission</td>
<td>111</td>
</tr>
<tr>
<td>4.3.3 Gear Transmission</td>
<td>113</td>
</tr>
<tr>
<td>4.3.4 Dynamic Model of a Drive Train</td>
<td>115</td>
</tr>
<tr>
<td>4.4 Shaft Speed Control Loop Design Principles</td>
<td>117</td>
</tr>
<tr>
<td>4.5 Tutorials</td>
<td>122</td>
</tr>
<tr>
<td>4.5.1 Tutorial 1: Elementary Synchronous Drive</td>
<td>122</td>
</tr>
<tr>
<td>4.5.2 Tutorial 2: Elementary Asynchronous (Induction) Drive</td>
<td>123</td>
</tr>
<tr>
<td>4.5.3 Tutorial 3: Elementary DC Drive</td>
<td>125</td>
</tr>
<tr>
<td>4.5.4 Tutorial 4: Drive Dynamics Example</td>
<td>126</td>
</tr>
<tr>
<td>4.5.5 Tutorial 5: Speed Control Loop Design Example</td>
<td>127</td>
</tr>
</tbody>
</table>

5 Modeling and Control of DC Machines

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Separately Excited, Current-Controlled DC Machine</td>
<td>131</td>
</tr>
<tr>
<td>5.1.1 Symbolic Model of the DC Machine</td>
<td>132</td>
</tr>
<tr>
<td>5.1.2 Generic Model DC Machine</td>
<td>135</td>
</tr>
<tr>
<td>5.2 Field-Oriented Machine Model</td>
<td>135</td>
</tr>
</tbody>
</table>
5.3 Control of Separately Excited DC Machines
 5.3.1 Controller Concept .. 138
 5.3.2 Operational Drive Boundaries 139
 5.3.3 Use of Current Source IRTF Based Model 146
 5.3.4 Use of a Voltage Source with a Model Based Current
 Control .. 147
5.4 Tutorials .. 150
 5.4.1 Tutorial 1: Current Source Model of a Brushed DC
 Machine with Segmented Commutation Module 150
 5.4.2 Tutorial 2: Modeling of a Current and Voltage Source
 Connected Brushed DC Motor 152
 5.4.3 Tutorial 3: Current Source Connected Brushed DC
 Motor with Field Weakening Controller 154
 5.4.4 Tutorial 4: DC Drive Operating under Model Based
 Current Control and a Field Weakening Controller 157
 5.4.5 Tutorial 5: DC Drive with Model Based Current
 Control and Shaft Speed Control Loop 159
 5.4.6 Tutorial 6: Experimental Results of DC Machine 161
6 Synchronous Machine Modeling Concepts 165
 6.1 Non-salient Machine ... 165
 6.1.1 Symbolic Model of a Non-salient Machine 166
 6.1.2 Generic Model ... 167
 6.1.3 Rotor-Oriented Model: Non-salient Synchronous
 Machine .. 169
 6.1.4 Steady-State Analysis 171
 6.2 Salient Synchronous Machine 175
 6.2.1 Generic Model ... 177
 6.2.2 Rotor-Oriented Model of the Salient Synchronous
 Machine .. 178
 6.2.3 Steady-State Analysis 180
6.3 Tutorials .. 184
 6.3.1 Tutorial 1: Dynamic Model of a Non-salient
 Synchronous Machine 184
 6.3.2 Tutorial 2: Steady-State Analysis of a Non-salient
 Synchronous Machine 186
 6.3.3 Tutorial 3: Stator Flux Linkage Excited Dynamic
 Model of a Synchronous Machine to Demonstrate the
 Rotor Flux Oriented Concept 187
 6.3.4 Tutorial 4: Dynamic Model of a Synchronous Machine
 with Adjustable Saliency 189
 6.3.5 Tutorial 5: Steady-State Analysis of a Salient
 Synchronous Machine 191
Control of Synchronous Machine Drives

7.1 Controller Principles
7.2 Control of Non-salient Synchronous Machines
 7.2.1 Operation under Drive Limitations
 7.2.2 Field Weakening Operation for PM Non-salient Drives
 7.2.3 Field Weakening for PM Non-salient Drives, with Constant Stator Flux Linkage Control
 7.2.4 Field Weakening forElectrically Excited Non-salient Drive, with Constant Stator Flux and Unity Power Factor Control
7.3 Control of Salient Synchronous Machines
7.4 Field-Oriented Control of a Current-Controlled Synchronous Machine
7.5 Field-Oriented Control of a Voltage-Source Connected Synchronous Machine
7.6 Tutorials
 7.6.1 Tutorial 1: Non-salient Synchronous Drive
 7.6.2 Tutorial 2: Non-salient Synchronous Drive, Constant Stator Flux Operation
 7.6.3 Tutorial 3: Non-salient Synchronous Drive, Unity Power Factor Operation
 7.6.4 Tutorial 4: Salient Synchronous Drive
 7.6.5 Tutorial 5: PM Salient Synchronous Drive with Model Based Current Control
 7.6.6 Tutorial 6: Experimental Results of a PM Non-salient Synchronous Drive

Induction Machine Modeling Concepts

8.1 Induction Machine with Squirrel-Cage Rotor
8.2 Zero Leakage Inductance Models of Induction Machines
 8.2.1 IRTF Based Model of the Induction Machine
 8.2.2 Field-Oriented Model
8.3 Machine Models with Leakage Inductances
 8.3.1 Fundamental IRTF Based Model
 8.3.2 Universal IRTF Based Model
 8.3.2.1 Rotor Flux Based IRTF Model
 8.3.2.2 Stator Flux Based IRTF Model
 8.3.3 Universal Stationary Frame Oriented Model
 8.3.4 Universal Field-Oriented (UFO) Model
 8.3.4.1 Rotor Flux Oriented Model
 8.3.4.2 Stator Flux Oriented Model
 8.3.5 Synchronous Frame Oriented Heyland diagram
 8.3.6 Steady-State Analysis
8.4 Parameter Identification and Estimates
8.5 Single-Phase Induction Machines
Contents

8.5.1 Steady-State Analysis of Capacitor-Run Single-Phase Induction Machines .. 277
8.6 Tutorials ... 285
 8.6.1 Tutorial 1: Simplified Induction Machine Model 285
 8.6.2 Tutorial 2: Universal Induction Machine Model 286
 8.6.3 Tutorial 3: Universal Stationary Oriented Induction Machine Model ... 288
 8.6.4 Tutorial 4: Current Controlled Zero Leakage Flux Oriented Machine Model ... 289
 8.6.5 Tutorial 5: Current Controlled Universal Field Oriented (UFO) Model ... 291
 8.6.6 Tutorial 6: Parameter Estimation Using Name Plate Data and Known Stator Resistance 292
 8.6.7 Tutorial 7: Grid Connected Induction Machine 294
 8.6.8 Tutorial 8: Steady State Characteristics, Grid Connected Induction Machine .. 296
 8.6.9 Tutorial 9: Grid Connected Single-Phase Induction Machine ... 297

9 Control of Induction Machine Drives ... 303
 9.1 Voltage-to-Frequency (V/f) Control ... 303
 9.1.1 Simple V/f Speed Controller .. 305
 9.1.2 V/f Torque Controller with Shaft Speed Sensor 309
 9.2 Field-Oriented Control .. 311
 9.2.1 Controller Principle ... 312
 9.2.2 Controller Structure ... 314
 9.2.3 UFO Module Structure ... 315
 9.2.4 IFO Using Measured Shaft Speed or Shaft Angle 316
 9.2.5 DFO with Air-Gap Flux Sensors ... 318
 9.2.6 DFO with Sensor Coils ... 319
 9.2.7 DFO with Voltage and Current Transducers 320
 9.2.8 DFO with Current and Shaft Speed Transducers 321
 9.3 Operational Drive Boundaries for Rotor Flux Oriented Control ... 323
 9.4 Field Weakening for Rotor Flux Oriented IM Drives 327
 9.5 Interfacing FOC with Current-Controlled IM .. 331
 9.6 Interfacing FOC with Voltage-Source-Connected IM 333
 9.7 Tutorials .. 337
 9.7.1 Tutorial 1: Simplified V/f Drive ... 337
 9.7.2 Tutorial 2: V/f Drive with Shaft Speed Sensor 340
 9.7.3 Tutorial 3: Universal Field-Oriented (UFO) Control with a Current Source Based Machine Model and Known Shaft Angle ... 342
 9.7.4 Tutorial 4: Induction Machine Drive with UFO Controller and Model-Based Current Control 348
9.7.5 Tutorial 5: Rotor Flux Oriented Induction Machine
Drive with UFO Controller and Field Weakening Controller .. 352
9.7.6 Tutorial 6: Experimental Results of an Induction Machine with UFO Controller 357

10 Switched Reluctance Drive Systems 361
10.1 Basic Machine Concepts .. 363
10.2 Operating Principles ... 365
 10.2.1 Single-Phase Motor Concept 365
 10.2.2 Torque Production and Energy Conversion Principles 367
 10.2.3 Single-Phase Switched Reluctance Machine: A Linear Example 371
 10.2.4 Switched Reluctance Modeling Concepts 380
 10.2.5 Representation of the Magnetization Characteristics 383
 10.2.6 Converter and Control Concepts 384
 10.2.7 Example of Low and High Speed Drive Operation ... 387
10.3 Multi-Phase Machines ... 392
 10.3.1 Converter Concepts 394
10.4 Control of Switched Reluctance Drives 396
 10.4.1 Drive Characteristics and Operating Range 396
 10.4.2 Drive Operational Aspects 398
 10.4.3 Direct Instantaneous Torque Control (DITC) 409
10.5 Switched Reluctance Demonstration Machine 416
10.6 Tutorials ... 421
 10.6.1 Tutorial 1: Analysis of a Linear SR Machine, with Current Excitation 421
 10.6.2 Tutorial 2: Non-linear SR Machine, with Voltage Excitation and Hysteresis Current Controller 424
 10.6.3 Tutorial 3: Non-linear SR Machine, with Voltage Excitation and PWM Controller 427
 10.6.4 Tutorial 4: Four-Phase Non-linear SR Model, with Voltage Excitation and Hysteresis Control 430
 10.6.5 Tutorial 5: Four-Phase Non-linear SR Model, with Voltage Excitation and Direct Instantaneous Torque Control (DITC) .. 433

References .. 439

Abbreviations ... 445

List of symbols .. 447

List of indices ... 449

Index ... 453