Mechanosensing Biology
Mechanical stress is known to regulate body function, evidence of which can be seen in many tissues such as bone, muscle, heart, and vessels. Bedridden patients lose bone when they are immobilized for a long time. Astronauts also experience muscle and bone loss during space flight. The heart functions to pump blood, causing mechanical stress to itself and to vascular tissue. The effects of mechanical stress can be observed not only in adults but also in developmental periods of life. Even the earliest establishment of primordial tissues required microenvironmental stress that would later play a role in the maintenance of cell structure and the shape of organs.

The function of certain membrane channels is regulated by mechanical stress. In conjunction with local mechanical stimuli, systemic regulatory events such as endocrine and neurological controls work interactively. To respond to its environment, the body requires the signals of mechanical stress in the skeletal tissue cells. It has been suggested that multiple signaling pathways operate in diverse types of cells by responding in different ways to mechanical stress. In muscle cells, membrane proteins have been shown to maintain their localization and functions under loading conditions, whereas loss of mechanical stress can lead to rapid loss of membrane proteins such as dystrophin. Homeostasis is impaired upon loss of mechanical stress, leading to pathological conditions such as osteopenia, muscle atrophy, and vascular tissue dysfunction. It is important, therefore, to understand the mechanisms of such signaling induced by mechanical stress in the maintenance of homeostasis. These mechanical signaling events are believed to maintain the functioning of the body and must be considered in contemplating new approaches to treating dysfunction and disease.

In this monograph, mechanical stress is discussed by experts in the field with respect to the molecular, cellular, and tissue aspects in close connection with medicine. Taking these aspects together, the book provides the most up-to-date information on cutting-edge advancements in the field of mechanobiology. In elderly populations, such mechanical pathophysiology, as well as the mechanical activities of locomotor and cardiovascular systems, is important because skeletal and heart functions decline and cause various diseases in other organs. For this reason, concern about mechanical stress-related health problems of elderly patients has been rapidly increasing. This book provides a timely contribution to research into locomotor and circulatory diseases that are major problems in contemporary society.

Masaki Noda
Contents

Part I Cells and Signals

1 Nanotechnology in Mechanobiology: Mechanical Manipulation of Cells and Organelle While Monitoring Intracellular Signaling..... 3
Hitoshi Tatsumi, Kimihide Hayakawa, and Masahiro Sokabe

2 Molecular Mechanisms Underlying Mechanosensing in Vascular Biology ... 21
Kimiko Yamamoto and Joji Ando

3 Mechanobiology During Vertebrate Organ Development 39
Makoto Asashima, Tatsuo Michiue, Kiyoshi Ohnuma, Yoshiro Nakajima, and Yuzuru Ito

Part II Tissue and Gravity

4 Mechanobiology in Skeletal Muscle: Conversion of Mechanical Information into Molecular Signal................................. 51
Yuko Miyagoe-Suzuki and Shin’ichi Takeda

5 Mechanobiology in Space ... 63
Yuushi Okumura and Takeshi Nikawa

6 Mechanical Stress and Bone .. 71
Masaki Noda, Tadayoshi Hayata, Tetsuya Nakamoto, Takuya Notomi, and Yoichi Ezura

7 TRP Channels and Mechanical Signals .. 87
Makoto Suzuki and Atsuko Mizuno
Part III Skeletal Response

8 Osteoblast Biology and Mechanosensing .. 105
Pierre J. Marie

9 Osteocytes in Mechanosensing: Insights from Mouse Models
and Human Patients ... 127
Ken Watanabe and Kyoji Ikeda

10 Osteocyte Mechanosensation and Transduction 141
Lynda Faye Bonewald

11 Mechanosensing and Signaling Crosstalks ... 157
Toshio Matsumoto, Rika Kuriwaka-Kido, and Shinsuke Kido

12 Osteoblast Development in Bone Loss Due
to Skeletal Unloading .. 167
Akinori Sakai and Toshitaka Nakamura

Part IV Bone Signaling

13 Mechanosensing in Bone and the Role
of Glutamate Signalling .. 181
Tim Skerry

14 Osteoclast Biology and Mechanosensing .. 193
Géraldine Pawlak, Virginie Vives, Emmanuelle Planus,
Corinne Albiges-Rizo, and Anne Blangy

Index ... 215
Contributors

Corinne Albiges-Rizo (Chapter 14)
Institut Albert Bonniot, INSERM U823, CNRS ERL3148 Université Joseph Fourier, Equipe DySAD, Site Santé, BP 170, 38042 Grenoble Cedex 9, France

Joji Ando (Chapter 2)
Laboratory of Biomedical Engineering, School of Medicine, Dokkyo Medical University, 880 Kita-kobayashi, Mibu, Tochigi 321-0293, Japan

Makoto Asashima (Chapter 3)
Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562, Japan
and
Department of Life Sciences (Biology), Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan

Anne Blangy (Chapter 14)
Montpellier University, Centre de Recherche de Biochimie Macromoléculaire, CNRS, 1919 route de Mende, 34297 Montpellier Cedex 5, France

Lynda Faye Bonewald (Chapter 10)
Department of Oral Biology, University of Missouri at Kansas City School of Dentistry, 650 East 25th Street, Kansas City, MO 64108-2784, USA

Yoichi Ezura (Chapter 6)
Department of Molecular Pharmacology, Division of Advanced Molecular Medicine, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan

Kimihide Hayakawa (Chapter 1)
ICORP/ORST, Cell Mechanosensing Project, Japan Science and Technology Agency, Nagoya, Aichi 466-8550, Japan
Contributors

Tadayoshi Hayata (Chapter 6)
Department of Molecular Pharmacology, Division of Advanced Molecular Medicine, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan

Kyoji Ikeda (Chapter 9)
Department of Bone and Joint Disease, National Center for Geriatrics and Gerontology (NCGG), 35 Gengo, Morioka, Obu, Aichi 474-8511, Japan

Yuzuru Ito (Chapter 3)
Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562, Japan

Shinsuke Kido (Chapter 11)
Department of Medicine and Bioregulatory Sciences, The University of Tokushima Graduate School of Medical Sciences, 3-18-15 Kuramato-cho, Tokushima 770-8503, Japan

Rika Kuriwaka-Kido (Chapter 11)
Department of Medicine and Bioregulatory Sciences, The University of Tokushima Graduate School of Medical Sciences, 3-18-15 Kuramato-cho, Tokushima 770-8503, Japan

Pierre J. Marie (Chapter 8)
Laboratory of Osteoblast Biology and Pathology, Inserm U606, Hopital Lariboisiere, 2 rue Ambroise Pare, 75475 Paris Cedex 10, France and University Paris Diderot, Paris, France

Toshio Matsumoto (Chapter 11)
Department of Medicine and Bioregulatory Sciences, The University of Tokushima Graduate School of Medical Sciences, 3-18-15 Kuramato-cho, Tokushima 770-8503, Japan

Tatsuo Michiue (Chapter 3)
Department of Life Sciences (Biology), Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan

Yuko Miyagoe-Suzuki (Chapter 4)
Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi Kodaira, Tokyo 187-8502, Japan
Contributors

Atsuko Mizuno (Chapter 7)
Department of Pharmacology, Jichi Medical University, 3311-1 Yakushiji Shimotsuke, Tochigi 329-0498, Japan

Yoshiro Nakajima (Chapter 3)
Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 4, 1-1-1 Higashi Tsukuba, Ibaraki 305-8562, Japan

Tetsuya Nakamoto (Chapter 6)
Global Center of Excellence Program “International Research Center for Tooth and Bone Diseases”, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
and
Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan

Toshitaka Nakamura (Chapter 12)
Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan

Takeshi Nikawa (Chapter 5)
Department of Nutritional Physiology, Institute of Health Biosciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan

Masaki Noda (Chapter 6)
Global Center of Excellence Program “International Research Center for Tooth and Bone Diseases”, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
and
Department of Molecular Pharmacology, Division of Advanced Molecular Medicine, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
and
Hard Tissue Genome Research Center, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
and
Department of Orthopedic Surgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
Takuya Notomi (Chapter 6)
Global Center of Excellence Program “International Research Center for Tooth and Bone Diseases”, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
and
Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan

Kiyoshi Ohnuma (Chapter 3)
Top Runner Incubation Center for Academia-Industry Fusion, Nagaoka University of Technology, 1603-1 Kamitomiokamachi, Nagaoka, Niigata 940-2188, Japan

Yuushi Okumura (Chapter 5)
Department of Nutritional Physiology, Institute of Health Biosciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan

Géraldine Pawlak (Chapter 14)
Montpellier University, Centre de Recherche de Biochimie Macromoléculaire, CNRS, 1919 route de Mende, 34297 Montpellier Cedex 5, France
and
Institut Albert Bonniot, INSERM U823, CNRS ERL3148 Université Joseph Fourier, Equipe DySAD, Site Santé, BP 170, 38042 Grenoble Cedex 9, France

Emmanuelle Planus (Chapter 14)
Institut Albert Bonniot, INSERM U823, CNRS ERL3148 Université Joseph Fourier, Equipe DySAD, Site Santé, BP 170, 38042 Grenoble Cedex 9, France

Akinori Sakai (Chapter 12)
Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan

Tim Skerry (Chapter 13)
Mellanby Bone Centre, School of Medicine and Biomedical Sciences, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK

Masahiro Sokabe (Chapter 1)
Department of Physiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, Aichi 466-8550, Japan
and
ICORP/ORST, Cell Mechanosensing Project, Japan Science and Technology Agency, Nagoya, Aichi 466-8550, Japan
Makoto Suzuki (Chapter 7)
Edogawabashi-clinic, DSD building 4F, 348 Yamabuki-cho, Shinjuku-ku, Tokyo 162-0801, Japan

Shin’ichi Takeda (Chapter 4)
Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan

Hitoshi Tatsumi (Chapter 1)
Department of Physiology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, Aichi 466-8550, Japan

Virginie Vives (Chapter 14)
Montpellier University, Centre de Recherche de Biochimie Macromoléculaire, CNRS, 1919 route de Mende, 34297 Montpellier Cedex 5, France

Ken Watanabe (Chapter 9)
Department of Bone and Joint Disease, National Center for Geriatrics and Gerontology (NCGG), 35 Gengo, Morioka, Obu, Aichi 474-8511, Japan

Kimiko Yamamoto (Chapter 2)
Laboratory of System Physiology, Department of Biomedical Engineering, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan