A First Course in “In Silico Medicine”

Volume 3

Series Editor
Masao Tanaka
Professor of Osaka University

1-3 Machikaneyama, Toyonaka
Osaka 560-8531, Japan
tanaka@me.es.osaka-u.ac.jp

For further volumes:
http://www.springer.com/series/8773
Computational Biomechanics

Theoretical Background
and Biological/Biomedical Problems

Springer
Preface

Computational biology and system biology are bases for in silico medicine, which consists of two main activities. The first is the development of mathematical models describing structures and functions of biological systems across a multiple scale augmented with experimental data from wet and dry biological and medical measurements. The second is the development of a simulator of biological functions in physiological and pathological situations to provide us with the behavior of components at multiple scales in a quantitative manner and to enable us to apply that information to medical problems. This book is the third volume of the textbook series A First Course in “In Silico Medicine”. The first volume gives an introduction to computational physiology, and the second volume is devoted to computational electrophysiology. The main physical quantities discussed in these two volumes are electric/ionic currents and potentials related to electrical phenomena in biology. Other important physical quantities in biological systems are forces and deformations studied in mechanics, and these are the topics of this third volume.

Biomechanics is an area that deals with mechanical aspects, especially structures and functions, of hardware and software constructing biological systems of a living body. It is considered a relatively new area compared to mechanics, biology, and physiology, in spite of its long history at least from the ancient Greeks with Aristotle’s treatises. In these decades, the area covered by biomechanics has expanded tremendously in accordance with rapid developments in life science. In fact, the dynamics of biomolecules such as DNA and proteins, mechanics of the whole cell and an intercellular structure, and so on are recent major subjects of biomechanics at a smaller scale, in addition to the advanced subjects of tissue and organ biomechanics of the musculo-skeletal system, the cardiovascular system, and other systems at a relatively larger scale. Qualitative advancement is another important direction in biomechanics because of rapid developments in biological/biomedical measurement and imaging technologies as well as development of computer analysis and information technologies. The quantity of data nowadays is so huge that it results in a qualitative change in the meaning of data as a whole.
The quantitative increase in data, such as structural geometry obtained with CT and MR images, enables us to deal with a target body entirely as it is, and invites us into a virtual computer world that represents realistic biological tissue and/or organ structures, while classical studies focus on essential phenomena by simplification necessitated by the limited availability of fundamental data and solvable scale-problems. This direction is common in biomedical imaging supported by computer graphics and virtual reality technologies. Computational biomechanics lies in the same direction towards computational biology and medicine. The essences of computational biomechanics are mathematical and computational modeling of phenomena concerning deformations and forces.

In this textbook, mathematical fundamentals are limited to continuum mechanics, and no attention is paid to statistical, quantum, and relativistic mechanics. Therefore, a biological body is assumed to be a continuum body, because the continuum assumption is reasonable in many scales of size and time for biomedical problems except for molecule size, although any body is composed of atoms. Computational modeling is thus for discrete representation of a continuum within the scale of continuum mechanics. This is not limited to the geometrical modeling of an object body but also involves the mechanical modeling of phenomena under consideration. The degree of discretization is determined of course based on the objective of computational analysis in general, and it governs the adequacy of results of analyses. These are sometimes limited by the resolution of fundamental data available for analysis. These days, there are many powerful and function-rich engineering tools available in mechanics analysis on the software market. These are applicable to biomechanics problems as well, but this does not mean that computational biomechanics analysis is ready for every researcher or student. To be a reasonable user and become a smart user, it is essential to understand what the software tools are able to do and are doing for your problem. Biomechanics problems need mechanical modeling for biological bodies and environments, which are essentially different from common problems in mechanical, civil, and other engineering fields. For these reasons, the theoretical bases and assumptions should be understood and therefore this textbook is self-contained, covering both the basics of continuum mechanics of biosolids and biofluids and the theoretical core of computational methods for continuum mechanics analyses. Several biomechanics problems in orthopedic and cardiovascular biomechanics and other areas are provided for better understanding of computational analysis background and modeling issues in biomechanics problems. These are mainly direct analyses but include back or inverse analyses as well.

A standard direct analysis is the first key of computational biomechanics in \textit{in silico} medicine that gives us much quantitative information for biological and biomedical phenomena in practical problems in medicine. A back/inverse analysis extended from a direct one is the promising second key as expected for the model-based prediction towards \textit{in silico} medicine. We hope readers will be interested in the further development of biomechanics and contribution to predictive medicine.
We are grateful for the support of the Japan MEXT program “in silico medicine” at Osaka University, and we thank the staff at Springer Japan for their patience and encouragement.

Masao Tanaka
Shigeo Wada
Masanori Nakamura
Contents

1 Introduction ... 1
 1.1 Biomechanics: Mechanics in/for Biology and Medicine 1
 1.2 One-Dimensional Mechanics of Biosolids and Biofluids 2
 1.2.1 A Dip into Biosolid Mechanics 2
 1.2.2 A Dip into Biofluid Mechanics 6
 1.3 Addendum to One-Dimensional Mechanics 10
 1.3.1 Law of Mixture ... 10
 1.3.2 Discrete Model of Continuum 13
 1.4 Biomechanics in Biology and Medicine: A Tiny Showcase 15
References .. 17

2 Mechanics of Biosolids and Computational Analysis 19
 2.1 Fundamentals of Solid Mechanics 20
 2.1.1 Stress and Force: Equilibrium Equations 20
 2.1.2 Strain and Displacement: Kinematic Equations 23
 2.1.3 Constitutive Equations: Linear Elasticity 25
 2.1.4 Constitutive Equations: Nonlinear Elasticity 28
 2.2 Mechanical Properties of Bone 32
 2.2.1 Cortical Bone ... 32
 2.2.2 Cancellous Bone .. 35
 2.3 Material Properties of Soft Tissue 37
 2.3.1 Arterial Wall .. 38
 2.3.2 Skin .. 40
 2.3.3 Cornea ... 41
 2.4 Principles of Virtual Work and Stationary Potential Energy 43
 2.4.1 Boundary Value Problem for Equilibrium 43
 2.4.2 Principle of Virtual Work 44
 2.4.3 Principle of Stationary Potential Energy 46
2.5 Finite Element Method .. 47
 2.5.1 Finite Element Discretization and Approximation 47
 2.5.2 Finite Element Equation for Small Strain
 Linear Elasticity ... 48
 2.5.3 Finite Element Equation for Finite Strain Hyperelasticity .. 51
 2.5.4 Shape Functions: Simplex, Complex
 and Multiplex Elements 53
 2.5.5 Shape Functions: Isoparametric Elements 61
2.6 Computational Biomechanics Problems 63
 2.6.1 Lattice Continuum Modeling for Cancellous
 Bone Structure .. 63
 2.6.2 Lateral Deformation Analysis of Spinal Column 68
 2.6.3 Stress Analysis of Temporomandibular Joint Disc 71
 2.6.4 Deformation Analysis of Cornea: Inverse Problems
 for Natural Shape and Intraocular Pressure 75
 2.6.5 Stress Analysis of Proximal Femur: Image-Based
 Analysis and Simulation 78
2.7 Summary .. 80
References .. 81
3 Mechanics of Biofluids and Computational Analysis 87
 3.1 Fundamentals of Fluid Mechanics 88
 3.1.1 Viscous and Inviscid Fluids 88
 3.1.2 Newtonian and Non-Newtonian Fluids 88
 3.1.3 Compressible and Incompressible Fluids 88
 3.2 Dimensionless Numbers ... 89
 3.2.1 Reynolds Number ... 89
 3.2.2 Womersley Number 91
 3.3 Eulerian and Lagrangian Representations of Fluid Flow 93
 3.4 Governing Equation of Fluid Flow 95
 3.4.1 Equation of Continuity 95
 3.4.2 Navier–Stokes Equation 98
 3.5 Euler-Based Computational Fluid Dynamics 103
 3.5.1 Discretization .. 103
 3.5.2 Finite Volume Method 107
 3.6 Lagrange-Based Computational Fluid Dynamics 116
 3.6.1 Governing Equations 116
 3.6.2 Modeling of the Interaction Between Particles 117
 3.6.3 Algorithm of the MPS Method 118
 3.7 Applications of Flow Simulations to Biomechanical Problems . 120
 3.7.1 Analysis of Blood Flow in the Aorta 121
 3.7.2 Analysis of Intraventricular Flow for the Assessment of a Left Ventricular
 Diastolic Function .. 125
3.7.3 Differentiation of Vascular Diseases by Pulse Wave Propagation .. 130
3.7.4 Primary Thrombus Formation by Platelet Aggregation ... 133
3.7.5 Analysis of the Behavior of Embolic Agents for Pre-operation Planning of Transcatheter Embolization ... 135
3.8 Summary .. 137
References ... 138

4 Spring Network Modeling Based on the Minimum Energy Concept ... 141
4.1 Fundamentals of Spring Network Mechanics .. 142
4.1.1 Single Spring Model .. 142
4.1.2 Network Spring Model .. 144
4.1.3 Bending Spring Model .. 144
4.1.4 Extended Spring Model ... 146
4.1.5 Extension to Continuum Model .. 147
4.2 Formulation and Solving Method ... 148
4.2.1 Minimum Energy Problem .. 148
4.2.2 Solving Method .. 149
4.3 Parameter Identification of the Spring Network Model .. 150
4.3.1 Stretching Spring Constant .. 150
4.3.2 Bending Spring Constant ... 152
4.4 Mechanical Behavior of a Single Red Blood Cell ... 154
4.4.1 Minimum Energy Problem to Determine the Shape of a Single Red Blood Cell 154
4.4.2 Red Blood Cell Behavior in a Shear Flow ... 159
4.5 Mechanical Properties of a Eukaryotic Cell .. 164
4.5.1 Mechano-Cell Model .. 164
4.5.2 Application of Mechano-Cell Model to Micro Biomechanics ... 166
4.6 Aneurysm Development .. 169
4.6.1 Modeling of Aneurysm ... 169
4.6.2 Rule-Based Simulation of Aneurysm Development ... 171
4.7 Multi-scale Blood Flow ... 173
4.7.1 Modeling of Multiple Red Blood Cell Flow ... 173
4.7.2 Multiscale Simulation of Blood Flow .. 175
4.8 Summary .. 176
References ... 177

5 Toward In Silico Medicine .. 181
5.1 Computational Biomechanics in Medical Engineering ... 181
5.2 Model-Based Diagnosis .. 182
5.3 Multiscale Modeling and Analysis 183
5.4 Subject-/Patient-Specific Modeling and Simulation 185
5.5 Towards Predictive Medicine 186

Index ... 189