OPLL
Ossification of the Posterior Longitudinal Ligament
2nd Edition
Ossification of the posterior longitudinal ligament (OPLL) is no longer only a Japanese disease. In 2004, 18 papers on OPLL and related conditions were published, and 7 of those were from countries other than Japan. Major textbooks on spine surgery, such as The Spine, The Cervical Spine, and Spine Surgery, have devoted chapters to OPLL. Although OPLL has been recognized as a distinct spinal disease entity, several questions regarding etiology and treatment have remained unanswered.

In 2002, the Committee for Study of Ossification of Spinal Ligaments, subsidized by the Ministry of Health, Labour and Welfare and chaired by Professor K. Nakamura, decided to systematically review papers on OPLL and related conditions. The purposes were to direct the research activities of the committee more effectively and to provide more certain knowledge about OPLL, in the form of clinical practice guidelines, for general practitioners and for patients suffering from the condition. A committee for this task was formed in cooperation with the Japanese Orthopaedic Association, and clinical practice guidelines for OPLL, consisting of 4 chapters and 75 research questions, were developed after almost 3 years. Unfortunately, the guidelines have been published only in Japanese as of this writing. Therefore, 4 chapters of this book (“Overview of Epidemiology and Genetics,” “Overview of Etiology and Pathogenesis,” “Diagnosis of OPLL and OYL,” and “Overview of Treatment for Ossification of the Longitudinal Ligament and the Ligamentum Flavum”) were included as summaries of the 4 chapters of the guidelines.

One of the important issues that arose during the development of the guidelines was that of diagnostic criteria. OPLL was discovered before computerized tomography had been devised; therefore, OPLL was diagnosed on the basis of clinical and roentgenographic findings from conventional imaging techniques such as plain roentgenography or tomography. However, with an increase in the diversity of medical professionals who take care of patients with spinal disease and with advances in imaging technology such as computerized tomography, a small ossified lesion that usually would not grow to compress the spinal cord is sometimes diagnosed as OPLL, which confuses patients. Diagnosis of OPLL has been made based on tactical knowledge—that is, knowledge held by a closed society made up of experts in the field. This is not a rare example. Several common spinal diseases, such as cervical spondylotic myelopathy, lumbar disc herniation, and lumbar canal stenosis, are diagnosed in this manner. The committee has set tentative diagnostic criteria for OPLL until more definite criteria can be established scientifically, and those tentative diagnostic criteria for OPLL are included in this book.

Since 1997, when the first edition of OPLL was published, research on OPLL has progressed steadily in genetics and bone cell physiology. Genetic studies using a variety of approaches, supported by nationwide collaboration, seem to be narrowing in on a disease-related gene. The process of ossification in this condition has been elucidated by studies using techniques of bone cell physiology. Clinical studies using imaging and electrophysiological modalities have clarified the pathophysiology of the spinal cord in OPLL. Follow-up studies have revealed long-term (more than 10 years) results of surgical treatment of both posterior and anterior approaches. All the chapters have been updated with these findings.
As clearly shown in this new edition, many facts regarding hyperostotic conditions of the spine have been cleared up through research activities over the past 30 years, mainly by the successive committees on OPLL. However, many important questions in basic and clinical research have not yet been clarified. Among the basic ones: What are the causative genes? What mechanisms work in hypertrophy and ossification of spinal ligaments in the condition? And there are others. In the clinical area, surgical decompression of the spinal cord in thoracic OPLL and ossification of the yellow ligament (OYL) is still a challenging subject. Although arguments over choice of surgical procedure have been settling down, criteria for the surgical technique for individual patients have not yet been established.

Progress in basic research of OPLL may largely depend on advances in the basic sciences of genetics, bone cell physiology, and related fields. In surgery, assiduous efforts by surgeons to devise a technique for better and safer results are mandatory. Such improvement in treatment for any surgical condition is general. Additionally, for relatively rare conditions such as OPLL, establishment of a system of clinical trials is important to substantiate the significance of a new treatment, and this is the surgeon’s task.

Through the challenge posed by this disease, we Japanese spine surgeons have learned many things about bone biology and about the spine and spinal cord as well, and we have developed various surgical techniques to conquer the condition. OPLL, however, still confronts us, and to surmount this refractory hyperostotic condition of the spine, we must expand our research into new fields. Development of drugs to control bone formation is one example—drugs that not only prevent progression of ossification of the spinal ligament but that also preserve spinal mobility, which we spine surgeons sometimes have neglected. Another example is repair or regeneration of the injured spinal cord. I hope that these goals will be achieved with further study of OPLL.

The editors express their sincere thanks to the members of the Committee on Clinical Practice Guidelines of OPLL: Drs. K. Yonenobu (Chairperson), M. Iwasaki, K. Satomi, T. Taguchi, M. Tanaka, Y. Toyama, and S. Matsunaga; and to the members of the working group for reviewing papers: Drs. H. Aono, Y. Itoh, S. Okuda, K. Kato, K. Kaneko, J. Kouno, K. Takeuchi, K. Toyoda, K. Hayashi, and A. Miyauchi. Without their perseverance, the guidelines as well as this book would not have been completed.

Kazuo Yonenobu
Ossification of the Posterior Longitudinal Ligament (OPLL) has long been a challenge to orthopedic spinal surgeons in Japan, and their struggle to meet that challenge has marked a turning point in the history of spinal surgery. Investigation of the etiology and treatment of the condition has taught surgeons to see diseases of the spine and their surgical treatment in a new perspective.

It was truly a surprise to learn that the posterior longitudinal ligament could become a thick, bony plate in the cervical spine and impinge on the spinal cord, leading to paralysis. Even more amazing, however, is that innumerable roentgenological findings of such thick, bony lesions could be overlooked for decades before OPLL became well recognized by physicians in Japan. Progress in diagnostic imaging technology, first in computed tomography (CT) and then in magnetic resonance imaging (MRI), has helped in diagnosis and evaluation of the disease and in deciding therapeutic modalities. There is no better tool than CT and CT myelography for demonstrating the real threat of OPLL to the cervical spinal cord. MRI, however, provides more information on widespread ossified lesions from the cervical to lumbar regions, and on the intramedullary changes caused by chronic compression. It is not a great exaggeration to say that OPLL is one of the leading reasons for the enthusiastic expansion in the market for the newest diagnostic imaging tools in Japan.

Despite Tuki yama’s autopsy report of OPLL in 1960, the etiology of OPLL remained unclear and its symptoms and characteristics were unfamiliar until 1975, when the Investigation Committee for OPLL moved toward better patient care and research of the etiology of the disease. Under the auspices of the Ministry of Health and Welfare, diagnostic criteria for OPLL scoring both of physical manifestations and of roentgenological findings were first established.

With dissatisfied patients who failed to recover after conventional laminectomy, a new technique of decompression had to be developed. Failure of surgical decompression was thought to be due to careless methods of laminectomy in which the thick rongeur blade or Kerrison punch was introduced into an extremely narrow spinal canal. Anterior disectomy and interbody fusion by either the Smith-Robinson or Cloward method often caused paraplegia. In the 1960s, patients with OPLL thus remained unhappy even after surgery; it was a dreary time for spinal surgeons in this country. Then came the introduction of a high-speed surgical drill for laminectomy, along with technical developments such as expansive laminoplasty (Hirabayashi, 1981) and anterior decompression by the floating of OPLL (Yamaura, 1983), which ensured decompression of the spinal cord without excision.

Considered as a systemic disease, OPLL was recognized rather early to occur with high frequency in patients suffering from diabetes mellitus. There were also a few reports on metabolic and endocrine disorders in close relationship with OPLL: hypophosphatemic rickets or hypoparathyroidism. OPLL is not simple calcification, however, but ossification of the ligaments; the etiological relationship between these disorders of calcium metabolism and ectopic ossification was explored in vain. As
precise pathological study progressed, the real harm of the lesion proved to be hyperplasia or growth of the ligament leading to occupation of the spinal canal. Fibrocartilagenous cell proliferation and matrix hyperplasia and subsequent ossification were found to be the essential processes of OPLL.

What mechanism, then, stimulates the growth of the ligament in a middle-aged or older person? Various growth factors or cytokines were found to be present in the growing front of OPLL, but the mechanism that releases or regulates them has yet to be clarified. A metabolic or endocrine system abnormality may influence this renewed growth. Predisposition to OPLL has been examined in familial surveys including studies of twins, and in the future, HLA gene analysis may be able to identify those at high risk of OPLL.

Finally, we consider what impact surgery for OPLL has on traditional spinal surgery. Decompression with spinal stability unimpaired, expansion of developmental canal stenosis without laminectomy, or sufficient decompression without excision of a lesion mass—these have been developed to treat paralysis due to OPLL. They have been made possible through the enthusiastic research and practice of Japanese spinal surgeons, and are now widely applicable to all sorts of diseases of the spine, without being limited to the cervical spine.

This monograph should be dedicated to those patients who were destined to suffer pain and paralysis without benefit of the current achievements in spinal surgery.

Keiro Ono
Contents

Preface to the Second Edition ... V
Preface to the First Edition ... VII
Contributors ... XIII

1. Introduction

History of Research
K. Nakamura ... 3

2. Epidemiology

Overview of Epidemiology and Genetics
S. Matsunaga and T. Sakou ... 7
OPLL: Disease Entity, Incidence, Literature Search, and Prognosis
S. Matsunaga and T. Sakou ... 11
Genetic Susceptibility to OPLL
I. Inoue ... 19

3. Pathology and Pathogenesis

Overview of Etiology and Pathogenesis
T. Taguchi ... 29
Etiology and Pathogenesis
T. Taguchi ... 33
Contribution of Metabolic Conditions to Ossification of the Posterior Longitudinal Ligament of the Spine
H. Kawaguchi, T. Akune, N. Ogata, A. Seichi, K. Takeshita, and K. Nakamura ... 37
Review of Histopathological Studies on OPLL of the Cervical Spine, with Insights into the Mechanism
N. Tsuzuki ... 41
Pathology of Ossification of the Ligamentum Flavum
M. Yoshida ... 49
Possible Roles of Bone Morphogenetic Proteins and Transforming Growth Factor-βs in the Pathogenesis of OPLL and OLF
H. Yoshikawa ... 59
Pathology of Spinal Cord Lesions Caused by Ossification of the Posterior Longitudinal Ligament
Y. Hashizume, T. Kameyama, J. Mizuno, H. Nakagawa, T. Yanagi, and M. Yoshida ... 65
4. Diagnosis of OPLL and OYL

Diagnosis of OPLL and OYL: Overview
M. Tanaka, A. Kanazawa, and K. Yonenobu .. 111

Clinical Manifestation of Cervical OPLL
K. Kaneko ... 115

Clinical Manifestations of Thoracic OPLL and OLF
M. Matsumoto, K. Chiba, and Y. Toyama .. 121

Diagnostic Imaging of Cervical Ossification of the Posterior Longitudinal Ligament
K. Nagata and K. Sato .. 127

Imaging Diagnosis of Thoracic OPLL and OLF
I. Kikkawa and Y. Hoshino .. 145

Electrophysiological Diagnosis of Cervical OPLL Myelopathy
K. Shinomiya, S. Tomizawa, and S. Kawabata .. 151

5. Treatment of OPLL and OLF

Overview of Treatment for Ossification of the Longitudinal Ligament and the Ligamentum Flavum
M. Iwasaki ... 165

Pharmacotherapy for Ossification of the Spinal Ligaments: Clinical Trial of Disodium (1-Hydroxyethylidene) Diphosphonate to Inhibit Progression of Ossification of the Posterior Longitudinal Ligament in the Cervical Spine after Posterior Decompression Surgery
K. Yonenobu, K. Nagata, K. Abumi, Y. Toyama, and S. Kawai .. 169

Conservative Treatment of Ossification of the Posterior Longitudinal Ligament in the Cervical Spine
M. Sumi, M. Doita, and K. Nishida .. 177

Choice of Surgical Procedure
M. Iwasaki and K. Yonenobu .. 181

Expansive Laminoplasty
Y. Toyama and K. Chiba .. 187

Expansive Open-door Laminoplasty for Ossification of the Posterior Longitudinal Ligament of the Cervical Spine: Surgical Indications, Technique, and Outcomes
K. Chiba, Y. Ogawa, M. Matsumoto, and Y. Toyama .. 193
Double-door Laminoplasty by Splitting Spinous Processes
A. Seichi, K. Takeshita, H. Kawaguchi, and K. Nakamura 201

Anterior Cervical Decompression for Cervical Myelopathy Caused by Ossification of the Posterior Longitudinal Ligament
K. Shinomiya, T. Matsuoka, Y. Kurosa, S. Shindo, O. Nakai, and M. Takahashi ... 209

Treatment of OPLL and OLFL of the Cervical Spine: Long-Term Results
Y. Kawaguchi ... 219

Choice of Surgical Procedures for Thoracic Ossification of the Posterior Longitudinal Ligament
A. Seichi, K. Takeshita, and K. Nakamura .. 225

Anterior Decompression and Fusion for Ossification of the Posterior Longitudinal Ligament of the Thoracic Spine: Procedure and Clinical Outcomes of Transthoracic and Transsternal Approaches
K. Ohnishi, K. Miyamoto, H. Hosoe, and K. Shimizu 231

Circumspinal Decompression with Dekyphosis Stabilization for Thoracic Myelopathy due to Ossification of the Posterior Longitudinal Ligament
N. Kawahara, K. Tomita, H. Murakami, S. Demura, Y. Sekino, W. Nasu, and Y. Fujimaki ... 235

Posterior Extensive Cervicothoracic Laminoplasty
Y. Nakagawa and M. Yoshida .. 241

Anterior Decompression Through Posterior Approach for Thoracic Myelopathy Caused by OPLL: Ohtsuka Procedure
K. Abumi, M. Ito, and A. Minami .. 249

Surgical Treatment for Ossification of the Posterior Longitudinal Ligament of the Thoracic Spine: Outcomes of One-Stage Posterior Decompression with Corrective Fusion Surgery
Y. Matsuyama, H. Yoshihara, T. Tsuji, Y. Sakai, H. Nakamura, Y. Katayama, and N. Ishiguro .. 259

Surgery for Ossification of the Ligamentum Flavum
Y. Tanaka, T. Sato, and T. Aizawa ... 265

Computer-Aided Surgery for Ossification of the Spinal Ligaments
A. Seichi and K. Nakamura ... 271

Surgical Treatment of Thoracic Ossification of the Posterior Longitudinal Ligament: Intraoperative Spinal Cord Monitoring
Y. Matsuyama, T. Tsuji, H. Yoshihara, Y. Sakai, H. Nakamura, and N. Ishiguro ... 279

Intraoperative Ultrasonography for Patients with Ossification of the Posterior Longitudinal Ligament
Y. Tokuhashi and H. Matsuzaki .. 287

Appendix: Diagnostic Criteria for OPLL and Diagnosis and Treatment Algorithm ... 299

Subject Index ... 303
Contributors

ABUMI, K.
Health Administration Center, Hokkaido University, N8 W5, Kita-ku, Sapporo 060-0808, Japan

AIZAWA, T.
Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryoumachi, Aoba-ku, Sendai 980-8574, Japan

AKUNE, T.
Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan

BABA, H.
Division of Orthopaedics and Rehabilitation Medicine, Department of Surgery, Fukui University School of Medicine, Matsuoka, Fukui 910-1193, Japan

CHIBA, K.
Department of Orthopaedic Surgery, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan

DEMURA, S.
Department of Orthopaedic Surgery, School of Medicine, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8641, Japan

DOITA, M.
Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan

FUJIMAKI, Y.
Department of Orthopaedic Surgery, School of Medicine, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8641, Japan

HASHIZUME, Y.
Institute for Medical Science of Aging, Aichi Medical University, Nagakute-cho, Aichigun, Aichi 480-1195, Japan

HOSHI, K.
Department of “Fuji Soft ABC” Cartilage & Bone Regeneration, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan

HOSHINO, Y.
Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan

HOSOE, H.
Department of Orthopedic Surgery, Gifu University School of Medicine, 1-1 Yanagido, Gifu 501-1193, Japan
Ikegawa, S.
Laboratory for Bone and Joint Diseases, SNP Research Center, RIKEN, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan

Inoue, I.
Division of Genetic Diagnosis, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan

Inukai, T.
Division of Orthopaedics and Rehabilitation Medicine, Department of Surgery, Fukui University School of Medicine, Matsuoka, Fukui 910-1193, Japan

Ishiguro, N.
Department of Orthopaedic Surgery, Nagoya University School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan

Ito, M.
Department of Orthopaedic Surgery, Hokkaido University Graduate School of Medicine, N15 W7, Kita-ku, Sapporo 060-8638, Japan

Iwasaki, M.
Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan

Kameyama, T.
Department of Neurology, Gifu Prefectural Tajimi Hospital, 5 Maehata-cho, Tajimi, Gifu 507-8522, Japan

Kanazawa, A.
Department of Orthopaedic and Rheumatic Surgery, National Hospital Organization, Osaka-Minami Medical Center, 2-1 Kidohigashi, Kawachinagano, Osaka 586-8521, Japan

Kaneko, K.
Department of Orthopaedic Surgery, Yamaguchi University School of Medicine, 1-1-1 Minami-Kogushi, Ube 755-8505, Yamaguchi, Japan

Katayama, Y.
Department of Orthopaedic Surgery, Nagoya University School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan

Kawabata, S.
Department of Spinal and Orthopaedic Surgery, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan

Kawaguchi, H.
Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan

Kawaguchi, Y.
Department of Orthopaedic Surgery, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama 930-0194, Japan

Kawahara, N.
Department of Orthopaedic Surgery, School of Medicine, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8641, Japan

Kawai, S.
Department of Orthopedic Surgery, Yamaguchi University School of Medicine, Yamaguchi, Japan

Kikkawa, I.
Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
Contributors

KIMURA, M.
Division of Orthopaedics and Rehabilitation Medicine, Department of Surgery, Fukui University School of Medicine, Matsuoka, Fukui 910-1193, Japan

KOBAYASHI, S.
Division of Orthopaedics and Rehabilitation Medicine, Department of Surgery, Fukui University School of Medicine, Matsuoka, Fukui 910-1193, Japan

KOKUBO, Y.
Division of Orthopaedics and Rehabilitation Medicine, Department of Surgery, Fukui University School of Medicine, Matsuoka, Fukui 910-1193, Japan

KUBO, K.
Department of Orthopedic Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan

KUROSA, Y.
Department of Orthopaedic and Spinal Surgery, Tokyo Medical and Dental University, School of Medicine, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan

MATSUMOTO, M.
Department of Musculoskeletal Reconstruction and Regeneration Surgery, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan

MATSUNAGA, S.
Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Sakuragaoka, Kagoshima 890-8520, Japan

MATSUOKA, T.
Department of Orthopaedic and Spinal Surgery, Tokyo Medical and Dental University, School of Medicine, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan

MATSUTAMA, Y.
Department of Orthopaedic Surgery, Nagoya University School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan

MATSUZAKI, H.
Department of Orthopaedic Surgery, Surugadai Nihon University Hospital, Tokyo, Japan

MINAMI, A.
Department of Orthopaedic Surgery, Hokkaido University Graduate School of Medicine, N15 W7, Kita-ku, Sapporo 060-8638, Japan

MIYAMOTO, K.
Department of Orthopedic Surgery, Gifu University School of Medicine, 1-1 Yanagido, Gifu 501-1193, Japan

MIZUNO, J.
Department of Neurosurgery, Aichi Medical University, Nagakute-cho, Aichi-gun, Aichi 480-1195, Japan

MURAKAMI, H.
Department of Orthopaedic Surgery, School of Medicine, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8641, Japan

NAGATA, K.
Department of Orthopaedic Surgery, Kurume University School of Medicine, 67 Asahimachi, Kurume 830-0011, Japan

NAKAGAWA, H.
Department of Neurosurgery, Aichi Medical University, Nagakute-cho, Aichi-gun, Aichi 480-1195, Japan
Nakagawa, Y.
Department of Orthopedic Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8510, Japan

Nakai, O.
Department of Orthopaedic and Spinal Surgery, Tokyo Medical and Dental University, School of Medicine, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan

Nakajima, H.
Division of Orthopaedics and Rehabilitation Medicine, Department of Surgery, Fukui University School of Medicine, Matsuoka, Fukui 910-1193, Japan

Nakamura, H.
Department of Orthopaedic Surgery, Nagoya University School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan

Nakamura, K.
Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan

Nasu, W.
Department of Orthopaedic Surgery, School of Medicine, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8641, Japan

Nishida, K.
Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan

 Ogata, N.
Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan

Ogawa, Y.
Department of Orthopaedic Surgery, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan

Ohnishi, K.
Department of Orthopedic Surgery, Hirano General Hospital, 176-5 Kurono, Gifu 501-1192, Japan

Sakai, Y.
Department of Orthopaedic Surgery, Nagoya University School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan

Sakou, T.
Sakou Orthopaedic Clinic, 1-30 Yamanokuchi, Kagoshima 892-0844, Japan

Sato, K.
Department of Orthopaedic Surgery, Kurume University School of Medicine, 67Asahimachi, Kurume 830-0011, Japan

Sato, R.
Division of Orthopaedics and Rehabilitation Medicine, Department of Surgery, Fukui University School of Medicine, Matsuoka, Fukui 910-1193, Japan

Sato, T.
Department of Orthopaedic Surgery, Sendai Orthopaedic Hospital, Sendai, Japan

Seichi, A.
Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan

Sekino, Y.
Department of Orthopaedic Surgery, School of Medicine, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8641, Japan
SHIMIZU, K.
Department of Orthopedic Surgery, Gifu University School of Medicine, 1-1 Yanagido, Gifu 501-1193, Japan

SHINDO, S.
Department of Orthopaedic and Spinal Surgery, Tokyo Medical and Dental University, School of Medicine, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan

SHINOMIYA, K.
Department of Orthopaedic and Spinal Surgery, Tokyo Medical and Dental University, School of Medicine, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan

SUMI, M.
Department of Orthopaedic Surgery, Japan Labour Health and Welfare Organization, Kobe Rosai Hospital, 4-1-23 Kagoike-dori, Chuo-ku, Kobe 651-0053, Japan

TAGUCHI, T.
Department of Orthopedic Surgery, Yamaguchi University School of Medicine, 1-1 Minami Kogushi, 1-Chome, Ube 755-8505, Yamaguchi, Japan

TAKAHASHI, M.
Department of Orthopaedic and Spinal Surgery, Tokyo Medical and Dental University, School of Medicine, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan

TAKESHITA, K.
Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan

TANAKA, M.
Department of Orthopaedic Surgery, Okayama University Medical School, 5-1 Shikata-cho, 2-Chome, Okayama 700-8558, Japan

TANAKA, Y.
Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryoumachia, Aoba-ku, Sendai 980-8574, Japan

TOKUHASHI, Y.
Department of Orthopaedic Surgery, Nihon University School of Medicine, 30-1 Oyaguchi-kamimachi, Itabashi-ku, Tokyo 173-8610, Japan

TOMITA, K.
Department of Orthopaedic Surgery, School of Medicine, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-8641, Japan

TOMIZAWA, S.
Department of Spinal and Orthopaedic Surgery, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan

TOYAMA, Y.
Department of Orthopaedic Surgery, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan

TSUIJI, T.
Department of Orthopaedic Surgery, Nagoya University School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan

TSUZUKI, N.
Toyama Ken Koshi Rehabilitation Hospital, 36 Shimo-iino, Toyama 931-8517, Japan

UCHIDA, K.
Division of Orthopaedics and Rehabilitation Medicine, Department of Surgery, Fukui University School of Medicine, Matsuoka, Fukui 910-1193, Japan
YAMAMOTO, K.
Department of Orthopedic Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Tokyo 160-0023, Japan

YANAGI, T.
Department of Neurology, Nagoya Daini Red Cross Hospital, Aichi, 2-9 Myoken-cho, Showa-ku, Nagoya 466-8650, Japan

YAYAMA, T.
Division of Orthopaedics and Rehabilitation Medicine, Department of Surgery, Fukui University School of Medicine, Matsuoka, Fukui 910-1193, Japan

YONENOBU, K.
National Hospital Organization, Osaka-Minami Medical Center, 2-1 Kidohigashi, Kawachinagano, Osaka 586-8521, Japan

YOSHIDA, M.
Department of Orthopedic Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8510, Japan

YOSHIDA, M.
Institute for Medical Science of Aging, Aichi Medical University, Nagakute-cho, Aichigun, Aichi 480-1195, Japan

YOSHIHARA, H.
Department of Orthopaedic Surgery, Nagoya University School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan

YOSHIKAWA, H.
Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Japan