Introduction to Programming Concepts with Case Studies in Python
Introduction to Programming Concepts with Case Studies in Python
Preface

Purpose

This is a book aiming to be an introduction to Computer Science concepts as far as programming is concerned. It is designed as the textbook of a freshman level CS course and provides the fundamental concepts and abstract notions for solving computational problems. The Python language serves as a medium for illustration/demonstration.

Approach

This book introduces concepts by starting with the Q/A ‘WHY?’ and proceeds by the Q/A ‘HOW?’. Most other books start with the Q/A ‘WHAT?’ which is then followed by a ‘HOW?’ . So, this book introduces the concepts starting from the grass-roots of the ‘needs’. Moreover, the answer to the question ‘HOW?’ is somewhat different in this book. The book gives pseudo-algorithms for the ‘use’ of some CS concepts (like recursion or iteration). To the best of our knowledge, there is no other book that gives a recipe, for example, for developing a recursive solution to a world problem. In other textbooks, recursion is explained by displaying several recursive solutions to well-known problems (the definition of the factorial function is the most famous one) and hoping for the student to discover the technique behind it. That is why students following such textbooks easily understand what ‘recursion’ is but get stunned when the time comes to construct a recursive definition on their own. This teaching technique is applied throughout the book while various CS concepts got introduced.

This book is authored in concordance with a multi-paradigm approach, which is first ‘functional’ followed by ‘imperative’ and then ‘object oriented’.

The CS content of this book is not hijacked by a programming language. This is also unique to this book. All other books either do not use any PL at all or first introduce the concepts only by means of the PL they use. This entanglement causes
a poor formation of the abstract CS concept, if it does at all. This book introduces the concepts ‘theoretically’ and then projects it onto the Python PL. If the Python parts (which are printed on light greenish background) would be removed, the book would still be intact and comprehensible but be purely theoretical.

Audience

This book is intended for freshman students and lecturers in Computer science or engineering as a text book of an introductory course frequently named as one of:

- Introduction to Programming
- Introduction to Programming Constructs
- Introduction to Computer Science
- Introduction to Computer Engineering

Acknowledgments

We would like to thank Faruk Polat and İ. Hakki Toroslu from the Middle East Technical University’s Department of Computer Engineering and Reda Alhajj from the Department of Computer Science of University of Calgary for their constant support. We would also like to thank Chris Taylor for her professional proofreading of the manuscript and our student Rowanne Kabalan for her valuable comments on the language usage. Moreover, we are very grateful to Aziz Türk for his key help in the official procedures of publishing the book.

Last but not least, we thank our life partners Gülnur and Gökçe and our families: without their support, this book would not have been possible.

Department of Computer Engineering,
Middle East Technical University,
Ankara, Turkey

Göktürk Üçoluk
Sinan Kalkan
Contents

1 The World of Programming 1
 1.1 Programming Languages 5
 1.1.1 Low-Level Programming Languages 5
 1.1.2 High-Level Programming Languages 6
 1.2 Programming Paradigms 7
 1.2.1 The Imperative Programming Paradigm 8
 1.2.2 The Functional Programming Paradigm 8
 1.2.3 The Logical-Declarative Programming Paradigm .. 9
 1.2.4 The Object-Oriented Programming Paradigm 9
 1.2.5 The Concurrent Programming Paradigm 11
 1.2.6 The Event-Driven Programming Paradigm 11
 1.3 The Zoo of Programming Languages 12
 1.3.1 How to Choose a Programming Language for an Implementation 13
 1.4 How Programing Languages Are Implemented 16
 1.4.1 Compilative Approach 17
 1.4.2 Interpretive Approach 19
 1.4.3 Mixed Approaches 20
 1.5 How a Program Gets “Written” 21
 1.5.1 Modular & Functional Break-Down 21
 1.5.2 Testing 22
 1.5.3 Errors 24
 1.5.4 Debugging 27
 1.5.5 Good Programming Practice 28
 1.6 Meet Python .. 29
 1.7 Our First Interaction with Python 31
 1.8 Keywords ... 31
 1.9 Further Reading 32
 1.10 Exercises .. 33
 Reference .. 34
Contents

2 Data: The First Ingredient of a Program ... 35
 2.1 What Is Data? .. 37
 2.2 What Is Structured Data? .. 37
 2.3 Basic Data Types .. 40
 2.3.1 Integers .. 40
 2.3.2 Floating Points ... 41
 2.3.3 Numerical Values in Python ... 44
 2.3.4 Characters .. 45
 2.3.5 Boolean ... 48
 2.4 Basic Organization of Data: Containers .. 50
 2.4.1 Strings ... 50
 2.4.2 Tuples ... 54
 2.4.3 Lists ... 57
 2.5 Accessing Data or Containers by Names: Variables .. 61
 2.5.1 Naming ... 61
 2.5.2 Scope and Extent .. 62
 2.5.3 Typing ... 62
 2.5.4 What Can We Do with Variables? ... 63
 2.5.5 Variables in Python ... 64
 2.6 Keywords ... 67
 2.7 Further Reading .. 67
 2.8 Exercises ... 68

3 Actions: The Second Ingredient of a Program ... 71
 3.1 Purpose and Scope of Actions ... 71
 3.1.1 Input-Output Operations in Python ... 74
 3.2 Action Types ... 77
 3.2.1 Expressions .. 77
 3.2.2 Expressions and Operators in Python .. 87
 3.2.3 Statements ... 93
 3.3 Controlling Actions: Conditionals ... 96
 3.3.1 The Turing Machine ... 97
 3.3.2 Conditionals ... 99
 3.3.3 Conditional Execution in Python ... 100
 3.4 Reusable Actions: Functions ... 103
 3.4.1 Alternative Ways to Pass Arguments to a Function 105
 3.4.2 Functions in Python ... 108
 3.5 Functional Programming Tools in Python .. 113
 3.5.1 List Comprehension in Python ... 113
 3.5.2 Filtering, Mapping and Reduction ... 113
 3.6 Scope in Python .. 114
 3.7 Keywords ... 115
 3.8 Further Reading .. 116
 3.9 Exercises ... 116
7 Objects: Reunion of Data and Action .. 195
 7.1 The Idea Behind the Object-Oriented Paradigm (OOP) 196
 7.2 Properties of Object-Oriented Programming 197
 7.2.1 Encapsulation .. 199
 7.2.2 Inheritance ... 200
 7.2.3 Polymorphism ... 202
 7.3 Object-Oriented Programming in Python 204
 7.3.1 Defining Classes in Python 204
 7.3.2 Inheritance in Python ... 209
 7.3.3 Type of Objects in Python 210
 7.3.4 Operator Overloading .. 211
 7.3.5 Example with Objects in Python: Trees 212
 7.3.6 Example with Objects in Python: Stacks 213
 7.4 Keywords .. 214
 7.5 Further Reading .. 214
 7.6 Exercises ... 215

Index ... 217