Springer Series in
MATERIALS SCIENCE

Editors: R. Hull · R. M. Osgood, Jr. · H. Sakaki · A. Zunger

Springer Series in Materials Science covers the complete spectrum of materials physics, including fundamental principles, physical properties, materials theory and design. Recognizing the increasing importance of materials science in future device technologies, the book titles in this series reflect the state-of-the-art in understanding and controlling the structure and properties of all important classes of materials.

31 Nanostructures and Quantum Effects
By H. Sakaki and H. Noge

32 Nitride Semiconductors and Devices
By H. Morkoç

33 Supercarbon
Synthesis, Properties and Applications
Editors: S. Yoshimura and R. P. H. Chang

34 Computational Materials Design
Editor: T. Saito

35 Macromolecular Science
and Engineering
New Aspects
Editor: Y. Tanabe

36 Ceramics
Mechanical Properties, Failure
Behaviour, Materials Selection
By D. Munz and T. Fett

37 Technology and Applications
of Amorphous Silicon
Editor: R. A. Street

38 Fullerene Polymers
and Fullerene Polymer Composites
Editors: P. C. Eklund and A. M. Rao

Volumes 1–30 are listed at the end of the book.
Technology and Applications of Amorphous Silicon

With 279 Figures and 20 Tables
Hydrogenated amorphous silicon (a-Si:H) has become an established material in semiconductor technology, led by photovoltaic and active matrix display applications. The primary attribute of the technology is its large area capability, which provides applications that are otherwise unavailable. The extraordinary ability to make devices on one-meter glass plates or long rolls of metal foil is outside the scope of traditional semiconductor manufacturing. A-Si:H exhibits the full range of semiconducting properties, although with lower speed and current compared with single crystal silicon, and the most important devices are thin film transistors and photodiodes. The plasma deposition technology along with the amorphous structure provide a wide set of compatible materials that allows diversity in device design and considerable band gap engineering. For example, a triple solar cell structure (Chap. 6) has 10–12 distinct layers, each specifically optimized to its role.

The book describes both established and emerging applications. Active matrix addressing is ideally suited to a-Si:H thin film transistors, and is applied to liquid crystal displays (Chap. 2), and image sensor arrays (Chap. 4). Such arrays are made with > 10 million distinct a-Si:H devices, a number which compares respectfully with any silicon IC. The arrays are embedded in electronic and optical systems, and the chapters describe how the devices interact with the external systems to fulfill their role.

One focus of the emerging technology is the development of novel devices with complex layered structures. Examples are integrated color sensors (Chap. 7) and large area position sensors (Chap. 8). Another focus is the integration of laser recrystallized polycrystalline silicon into the technology (Chap. 3). Polysilicon adds flexibility to the large area technology since, in addition to co-existing with a-Si:H devices on the same array, parts of an individual a-Si:H device, such as the TFT contacts, can be selectively recrystallized. Finally, some revolutionary approaches to the manufacture of devices using printing technology are described in Chap. 5. The expanding range of device options makes the future of a-Si:H and large area electronics look very promising.

As editor I would like to thank the authors for their excellent contributions to this book. I am grateful to the Xerox Palo Alto Research Center for their
support of the project, and to many colleagues with whom it has been a pleasure to work on this subject.

Palo Alto, 1999

Bob Street
Contents

1 Introduction .. 1
 Robert Street
 1.1 Overview of the Book .. 1
 1.2 Development of Amorphous Silicon 2
 1.3 Basic Properties of Amorphous Silicon 3
 References ... 5

2 Active-Matrix Liquid-Crystal Displays 7
 Toshihisa Tsukada
 2.1 Introduction .. 7
 2.2 TFT LCD .. 9
 2.2.1 TFT LCD Configuration .. 9
 2.2.2 Pixel Design .. 14
 2.2.3 Design Analysis 17
 2.2.4 Scaling Theory of TFT LCD 26
 2.2.5 Fabrication of TFT Panels 34
 2.3 Thin-Film Transistors 36
 2.3.1 Hydrogenated Amorphous Silicon Thin-Film Transistors ... 39
 2.3.2 TFT Characteristics 41
 2.3.3 Threshold Voltage Shift 49
 2.3.4 Simulation of TFT Behavior 53
 2.3.5 Two-Terminal Devices 60
 2.4 Liquid Crystal .. 61
 2.4.1 Physical Constants of Liquid Crystal 64
 2.4.2 Twisted-Nematic Cell 69
 2.4.3 In-Plane-Switching Cell 81
 2.4.4 Super-Twisted Nematic (STN) Cell 87
 References ... 89

3 Laser Crystallization for Polycrystalline Silicon Device Applications 94
 James B. Boyce and Ping Mei
 3.1 Introduction .. 94
 3.2 Laser Processing of Polysilicon 96
3.2.1 Polysilicon .. 96
3.2.2 Laser Crystallization 101
3.2.3 Grain Growth ... 105
3.2.4 Surface Roughening 110
3.2.5 Laser Doping ... 111
3.3 Low-Temperature Poly-Si Devices 117
 3.3.1 Device Fabrication 118
 3.3.2 CMOS Device Performance 121
 3.3.3 Device Leakage Currents 126
 3.3.4 Device Stability .. 130
3.4 Integration of a-Si and Poly-Si TFTs 132
 3.4.1 Development of Hybrid a-Si and Poly-Si Devices 133
 3.4.2 Hybrid Materials Processing 135
 3.4.3 Device Fabrication and Performance 138
3.5 Conclusion .. 142
References ... 143

4 Large Area Image Sensor Arrays 147
Robert Street
4.1 Introduction ... 147
4.2 Devices ... 148
 4.2.1 P-i-n Photodiodes 148
 4.2.2 Thin Film Transistors 157
4.3 Sensor Array Designs .. 160
 4.3.1 Matrix Addressed Readout 161
 4.3.2 TFT Addressed, p-i-n Photodiode Arrays 161
 4.3.3 High Fill Factor Array Designs 171
 4.3.4 TFT Addressed, X-Ray Photoconductor Arrays 172
 4.3.5 Diode Addressed Arrays 175
 4.3.6 CMOS Sensors ... 178
4.4 Imaging Systems and Their Performance 178
 4.4.1 Electronics ... 179
 4.4.2 Electronic Noise 185
 4.4.3 X-Ray Detection 191
 4.4.4 The Performance of X-Ray Detectors 194
4.5 Applications of Large Area Image Sensors 204
 4.5.1 Medical X-Ray Imaging 204
 4.5.2 Other Radiation Imaging Applications 211
 4.5.3 Document Scanning 214
4.6 Future Developments .. 216
References ... 217

5 Novel Processing Technology for Macroelectronics 222
S. Wagner, H. Gleskova, J.C. Sturm, and Z. Suo
5.1 Introduction ... 222
5.2 Resolution and Registration:
 The Density of Functions Achievable by Printing 225
5.3 Printed Toner Masks for Etching and Liftoff 228
 5.3.1 Toner Masks via Paper Transfer: TFTs on Glass Foil 228
 5.3.2 All Masks Printed Directly: TFTs on Steel Foil 230
5.4 Printing Active Materials: Jetting Doped Polymers
 for Organic Light Emitting Devices 232
5.5 Substrates and Encapsulation for Microelectronic Circuits 236
5.6 Plastic Substrate Foil: TFT on Polyimide 244
5.7 3-D Integration on a Foil Substrate:
 OLED/TFT Pixel Elements on Steel 246
5.8 Outlook .. 249
References ... 250

6 Multijunction Solar Cells and Modules 252
 Subhendu Guha
6.1 Introduction ... 252
6.2 Deposition Methods .. 254
 6.2.1 Glow-Discharge Deposition Technique 254
 6.2.2 Plasma Chemistry and the Growth Process 254
 6.2.3 Factors that Influence Film and Cell Quality 256
6.3 Single-Junction Cells ... 258
 6.3.1 Cell Structure ... 258
 6.3.2 Cell Characteristics 259
 6.3.3 Numerical Modeling 261
 6.3.4 Light-Induced Degradation 264
6.4 High Efficiency Cells ... 268
 6.4.1 Introduction .. 268
 6.4.2 Multijunction Cell 269
 6.4.3 Key Requirements for Obtaining High Efficiency 270
 6.4.4 Back Reflector .. 270
 6.4.5 Doped Layer .. 275
 6.4.6 Intrinsic Layers ... 277
 6.4.7 Optimization of the Component Cells
 and Current Matching 281
 6.4.8 Tunnel Junction ... 282
 6.4.9 Top Conducting Oxide 285
 6.4.10 Cell and Module Performance 285
6.5 Manufacturing Technology 287
 6.5.1 Manufacturing Process 287
 6.5.2 Production Status and Product Advantage 293
6.6 Alternative Technologies and Future Trends 295
References ... 299
8.4.1 Static Detection Limits of 1D TFPSD 371
8.4.2 Linearity and Spatial Resolution of 1D TFPSD 372
8.4.3 Position Response to Multiple Light Beams 374
8.4.4 Static Predicted and Experimental Performance of the 2D TFPSD Device .. 376
8.5 Dynamic Performance of the 1D and 2D TFPSD 376
 8.5.1 Response Time of the TFPSD 379
 8.5.2 Detection of Light Signals with Different Wavelengths 381
8.6 Characteristics of the a-Si:H p-i-n Structures Used to Produce the TFPSD ... 383
 8.6.1 J–V Curves .. 383
 8.6.2 Dependence of the Saturation Current of the Device on T 385
 8.6.3 Spectral Response and Detectivity 386
8.7 Peripherals for 1D and 2D TFPSD Signal Processing 387
 8.7.1 Optical Methods .. 387
 8.7.2 Peripherals for Signal Processing 389
8.8 Simulated and Experimental Data in 2D Optical Inspection Systems with TFPSD Detector .. 392
8.9 Linear Array of Thin Film Position Sensitive Detector (LTFPSD) ... 393
 8.9.1 Principles of the Optical Methods Used 394
 8.9.2 Positional Resolution of the Array 395
 8.9.3 Hardware to Control Arrays of Multiple 1D Sensors 396
 8.9.4 Bandwidth Requirements for the Preamplifiers Used in the Hardware Control Unit of the LTFPSD 398
8.10 Summary and Future Outlook 399
References ... 400

Symbols and Abbreviations .. 404

Subject Index ... 411