Supplement to
Basic Research in Cardiology, Vol. 87, Suppl. 2 (1992)

Editors:
G. Heusch (Essen), R. Jacob (Tübingen), Th. Kenner (Graz)

J. Holtz, H. Drexler, H. Just (Eds.)

Cardiac Adaptation in Heart Failure

Risks due to myocardial phenotype changes
Introduction

Traditionally, cardiac hypertrophy is regarded as an adaptation of the heart to permanent mechanical overload. Regardless of the fact that many different and often unknown primary causes can result in heart failure, mechanical overload and myocardial hypertrophy is found in almost all forms of manifest chronic heart failure (apart from failure due to extramyocardial hindrances to inflow or to relaxation). However, the reactive enlargement of myocardial mass in response to an enhanced hemodynamic burden appears to be a double-edged sword.

Obviously, the hypertrophy helps to reduce the enhanced ventricular wall stress in heart failure by adding contractile units to the overdistended chamber wall. However, in recent years it became clear that this adaptive hypertrophic process is rather complex and may include problematic facets. The adaptive hypertrophy includes proliferation of the nonmyocyte cardiac cells as well as substantial alterations in the phenotype of the growing myocytes due to differential changes in gene expression. Presently open issues in this context are: What is the pathophysiological relevance of this altered phenotype of the myocardial tissue in overload hypertrophy? Does it explain the disturbed diastolic function of the failing myocardium? Does it contribute to the enhanced risk of complex ventricular arrhythmias? What is the relevance of a disproportionate increase in myocardial mass relative to the growth of the coronary vascular tree? Are there hypertrophy-specific alterations in coronary vascular function, even in absence of artherosclerotic coronary heart disease? Facts, concepts and opinions on these questions are under intensive discussion and research in cardiology, worldwide.

Within this volume, three questions out of the complex problem of cardiac adaptation in heart failure will be considered by international experts in clinical and experimental cardiology:

- What do we know about the cellular transduction mechanisms triggering myocyte hypertrophy and phenotype alterations in response to hemodynamic overload?
- Is the fragile Ca\(^{++}\)-homeostasis of hypertrophied cardiocytes a common basis for disturbed diastolic function and for the susceptibility to complex ventricular arrhythmias in heart failure?
- Is there a specific trophic role of the renin-angiotensin-system in cardiac adaptation to chronic overload?

The contributions to this volume resulted from the lectures and discussions of an international symposium devoted to these questions, which took place in Freiburg/Breisgau, Germany, December 5–7, 1991. This symposium was under the auspices of the European Society of Cardiology (Working group: Drug Therapy in Cardiology), of the Deutsche Gesellschaft für Herz- und Kreislaufforschung (Arbeits-
gemeinschaft Vasodilatantien), and of the Society for Cooperation in Medical Sciences, Freiburg. We are very grateful for the generous financial support by Bristol-Myers-Squibb, Munich, and by Schwarz-Pharma, Monheim, which made this symposium possible.

The success of the symposium came from the excellent lectures of the invited experts and from the lively and intensive discussions, which were inspired and directed by the distinguished chairmen of the sessions: W. Kübler (Heidelberg, Germany), A.H. Henderson (Cardiff, United Kingdom), F. Burkart (Basel, Switzerland), H. Krayenbühl (Zürich, Switzerland) and H. Scholz (Hamburg, Germany). Indispensable, however, were the excellent symposium organization in the hands of Mrs. Hedy Woeste, Bristol-Myers-Squibb, Munich, and the skillful help by Mrs. S. Müller, Steinkopff-Verlag, in preparing this volume.

Freiburg, summer 1992

J. Holtz
Institute of Pathophysiology
Martin-Luther Universität
Halle/Saale

H. Drexler, H. Just
Klinikum der Albert-Ludwigs-Universität
Abteilung Innere Medizin III - Kardiologie-Freiburg
Contents

Introduction ... V

Biological adaptation of the myocardium to a permanent change in loading conditions
Swynghedauw, B. ... 1

Role of protein kinase system in the signal transduction of stretch-mediated myocyte growth
Yazaki, Y., I. Komuro ... 11

Sympathetic modulation of the cardiac myocyte phenotype: studies with a cell-culture model of myocardial hypertrophy
Long, C.S., K. Kariya, L. Karns, P.C. Simpson 19

Growth factors, growth factor response elements, and the cardiac phenotype
Schneider, M.D., W.R. McLellan, F.M. Black, T.G. Parker 33

Signaling mechanisms for the activation of an embryonic gene program during the hypertrophy of cardiac ventricular muscle
Chien, R. .. 49

Endothelial modulation of myocardial contraction:
mechanisms and potential relevance in cardiac disease
Shah, A.M., M.J. Lewis ... 59

The regulation of calcium cycling in stressed hearts

Energetics of calcium cycling in nonfailing and failing human myocardium
Hasenfuss, G., L.A. Mulieri, C. Holubarsch, B. Pieske, H. Just, N. R. Alpert . 81

Spontaneous sarcoplasmic reticulum Ca^{2+} release leads to heterogeneity of contractile and electrical properties of the heart
Lakatta, E.G., A. Talo, M.C. Capogrossi, H.A. Spurjeon, M.D. Stern 93

Afterdepolarizations and triggered activity
Fozzard, H.A. ... 105
The contribution of nonreentrant mechanisms to malignant ventricular arrhythmias
Pogwizd, S.M., B. Corr .. 115

The potential role of Ca\(^{2+}\) for electrical cell-to-cell uncoupling and conduction block in myocardial tissue
Kléber, G... 131

Failure of myocardial inactivation: a clinical assessment in the hypertrophied heart
Paulus, W.J., M.A. Goethals, S.U. Sys ... 145

Diastolic dysfunction in pressure-overload hypertrophy and its modification by angiotensin II: current concepts
Lorell, B.H... 163

Mechanisms of cardiac growth. The role of the renin-angiotensin system
Fernandez-Alfonso, M.S., D. Ganten, M. Paul 173

Cardiac fibroblasts: function, regulation of gene expression, and phenotypic modulation
Eghbali, M... 183

Modulation of myocardial sarcoplasmic reticulum Ca\(^{2+}\)-ATPase in cardiac hypertrophy by angiotensin converting enzyme?
Holtz, J., R. Studer, H. Reinecke, H. Just, H. Drexler 191

Subject index ... 205