Volumes already published

Volume 1: Trees I (1986)
Volume 2: Crops I (1986)
Volume 3: Potato (1987)
Volume 4: Medicinal and Aromatic Plants I (1988)
Volume 5: Trees II (1989)
Volume 6: Crops II (1988)
Volume 7: Medicinal and Aromatic Plants II (1989)
Volume 8: Plant Protoplasts and Genetic Engineering I (1989)
Volume 10: Legumes and Oilseed Crops I (1990)
Volume 11: Somaclonal Variation in Crop Improvement I (1990)
Volume 12: Haploids in Crop Improvement I (1990)
Volume 14: Rice (1991)
Volume 15: Medicinal and Aromatic Plants III (1991)
Volume 17: High-Tech and Micropropagation I (1991)
Volume 18: High-Tech and Micropropagation II (1992)
Volume 19: High-Tech and Micropropagation III (1992)
Volume 20: High-Tech and Micropropagation IV (1992)
Volume 21: Medicinal and Aromatic Plants IV (1993)
Volume 24: Medicinal and Aromatic Plants V (1993)
Volume 25: Maize (1994)
Volume 26: Medicinal and Aromatic Plants VI (1994)
Volume 27: Somatic Hybridization in Crop Improvement I (1994)
Volume 28: Medicinal and Aromatic Plants VII (1994)
Volume 31: Somatic Embryogenesis and Synthetic Seed II (1995)
Volume 32: Cryopreservation of Plant Germplasm I (1995)
Volume 33: Medicinal and Aromatic Plants VIII (1995)
Volume 36: Somaclonal Variation in Crop Improvement II (1996)
Volume 37: Medicinal and Aromatic Plants IX (1996)

Volumes in preparation

Volume 39: High-Tech and Micropropagation V
Volume 40: High-Tech and Micropropagation VI
Volume 41: Medicinal and Aromatic Plants X
Dedicated to
Professor Jean Semal
of the Faculté des Sciences Agronomiques,
Gembloux (Belgium), whose laboratory I had
the privilege of visiting in 1985
Preface

Somaclonal variation in plant cell cultures has been the focus of interest recently for the induction of much needed genetic variability in crops. It also enables one to add to or intensify only one feature of an established variety possessing a combination of most of the useful agronomic traits. Over the past 5 years, much information has accumulated on the in vitro induction of genetic variability in a number of plants of economic importance. Taking these developments into consideration, the present book, like the previous volume, *Somaclonal Variation in Crop Improvement I*, published in 1990, is special in its approach. It comprises 24 chapters dealing with somaclonal variants showing resistance to salt/drought, herbicides, viruses, *Alternaria, Fusarium, Glomerella, Verticillium, Phytophthora*, fall armyworm, etc. in a number of plant species. The book has been divided into two sections:

Section I. Somaclonal variation in agricultural crops (wheat, rice, maize, sorghum, potato, tomato, *Lotus, Stylosanthes*, banana, strawberry, citrus, colt cherry).

Section II. Somaclonal variation in medicinal and aromatic plants (*Atropa, Carthamus, Hypericum, Lavatera, Nicotiana, Primula, Rauwolfia, Scilla*, and *Zinnia*).

This book will be of great assistance to research workers, teachers, and advanced students of plant biotechnology, tissue culture, pathology, horticulture, pharmacy, and especially plant breeding.

New Delhi, March 1996

Professor Y.P.S. BAJAJ
Series Editor
Contents

Section I Somaclonal Variation in Agricultural Crops – Cereals, Potato, Fruits, Legumes

I.1 In Vitro Production of *Fusarium*-Resistant Wheat Plants
K.Z. AHMED, Á. MESTERHÁZY, and F. SÁGI (With 2 Figures)

1 Introduction	3
2 Review of In Vitro Studies	7
3 Induced or Noninduced Somaclonal Variation for *Fusarium* Resistance?	8
4 Summary and Conclusions	14
5 Protocol	15
References	16

I.2 In Vitro Production of Male Sterile Rice Plants
D.H. LING (With 18 Figures)

1 Introduction	20
2 Sterile Mutants from Somaclones in Rice	21
3 A Male Sterile Line, 54257/162-5, from Somaclones	32
4 Origin of the Maintainer, Somaclone 162-5	43
5 Summary and Conclusions	43
References	44

I.3 Release of the Rice Variety Dama Developed by Haploid Somaclone Breeding
L.E. HESZKY, I. SIMON-KISS, and D.Q. BINH (With 2 Figures)

1 Introduction	46
2 Somaclonal Breeding	46
3 Summary and Conclusions	53
References	53

I.4 Somaclonal Variation for *Fusarium* Tolerance in Maize
H.S. ZHOU and Y.H. DENG (With 4 Figures)

1 Introduction	55
2 Brief Review of *Fusarium* Studies on Maize	56
3 Somaclonal Variation for *Fusarium moniliforme* Tolerance in Maize	58
1.5 In Vitro Production of Fall Armyworm (Spodoptera frugiperda)-Resistant Maize and Sorghum Plants
B.R. WiseMan, D.J. Isenhour, and R.R. Duncan

1.6 Somaclonal Variation in Sorghum
T. Cai and L.G. Butler (With 6 Figures)

1.7 In Vitro Production of Late Blight (Phytophthora infestans)-Resistant Potato Plants
A.C. CasSells and P.T. Sen (With 3 Figures)

1.8 In Vitro Production of Verticillium dahliae-Resistant Potato Plants
D. Sihachakr, R. Jadari, A. Kunothai-Muhsin, L. Rossignol, R. Haicour, and G. Ducreux (With 3 Figures)
1.9 Somaclonal Variation for Salt Tolerance in Tomato and Potato
M. TAL (With 2 Figures)

1 Introduction .. 132
2 Common Attributes of Tomato and Potato Plants 133
3 Regeneration Capability and Somaclonal Variation 134
4 The Phenomenon of Epigenetic Adaptation 134
5 Do the Mechanisms of Tolerance Operating in Cultured Cells Correlate with Those of the Whole Plant? 135
6 In Vitro Selection and Regeneration of Salt-Tolerant Plants ... 137
7 Summary and Conclusions 140
References .. 143

I.10 Somaclonal Variation in *Lotus corniculatus* L.
(Birdsfoot Trefoil)
M. NiiKEKI (With 6 Figures)

1 Introduction .. 146
2 In Vitro Culture Studies 147
3 Somaclonal Variation .. 147
4 Summary and Conclusions 156
5 Protocol ... 158
References .. 158

I.11 Somaclonal Variation in *Stylosanthes* Species
I.D. GODWIN (With 5 Figures)

1 Introduction .. 160
2 Tissue Culture and Regeneration Techniques 162
3 Somaclonal Variation .. 163
4 Attempts to Improve Disease Resistance Via In Vitro Selection .. 168
5 Summary and Conclusions 169
6 Protocol for Regeneration of *Stylosanthes* Callus Cultures 171
References .. 172

I.12 Somaclonal Variation in Banana and Plantain (*Musa* Species)
O. REUVENI, Y. ISRAELI, and E. LAHAV (With 2 Figures)

1 General Account .. 174
2 In Vitro Regeneration and Somaclonal Variation 175
3 Factors Affecting Somaclonal Variation 181
4 Detection of Somaclonal Variation 184
5 Somaclonal Variation and Banana Improvement 189
6 Summary and Conclusions 191
References .. 192
I.13 Somaclonal Variation for Resistance to Fusarium- and Glomerella-Caused Diseases in Strawberry (Fragaria × ananassa)
H. TOYODA (With 5 Figures)

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>197</td>
</tr>
<tr>
<td>2</td>
<td>Brief Review of Somaclonal Studies on Strawberry</td>
<td>199</td>
</tr>
<tr>
<td>3</td>
<td>Somaclonal Variation for Disease Resistance</td>
<td>199</td>
</tr>
<tr>
<td>4</td>
<td>Summary and Conclusions</td>
<td>207</td>
</tr>
<tr>
<td>5</td>
<td>References</td>
<td>208</td>
</tr>
</tbody>
</table>

I.14 In Vitro Selection for Salt Tolerance in Citrus Rootstocks
J. BOUHARMONT and N. BELOUALY (With 5 Figures)

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>210</td>
</tr>
<tr>
<td>2</td>
<td>In Vitro Culture in Citrus</td>
<td>211</td>
</tr>
<tr>
<td>3</td>
<td>Somaclonal Variation and In Vitro Selection</td>
<td>212</td>
</tr>
<tr>
<td>4</td>
<td>Summary and Conclusions</td>
<td>219</td>
</tr>
<tr>
<td>5</td>
<td>Protocol</td>
<td>220</td>
</tr>
<tr>
<td>6</td>
<td>References</td>
<td>220</td>
</tr>
</tbody>
</table>

I.15 In Vitro Selection for Salt/Drought Tolerance in Colt Cherry (Prunus avium × pseudocerasus)
S.J. OCHATT (With 6 Figures)

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>223</td>
</tr>
<tr>
<td>2</td>
<td>In Vitro Studies for Salt Tolerance</td>
<td>224</td>
</tr>
<tr>
<td>3</td>
<td>Conclusions</td>
<td>236</td>
</tr>
<tr>
<td>4</td>
<td>References</td>
<td>237</td>
</tr>
</tbody>
</table>

Section II Somaclonal Variation in Medicinal and Aromatic Plants

II.1 In Vitro Induction of Herbicide Resistance in Atropa belladonna L.
M. YAMAZAKI and K. SAITO (With 3 Figures)

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>241</td>
</tr>
<tr>
<td>2</td>
<td>Somaclonal Variation and Genetic Engineering in Atropa</td>
<td>241</td>
</tr>
<tr>
<td>3</td>
<td>Herbicide Resistance</td>
<td>242</td>
</tr>
<tr>
<td>4</td>
<td>Summary and Conclusions</td>
<td>246</td>
</tr>
<tr>
<td>5</td>
<td>Protocol</td>
<td>247</td>
</tr>
<tr>
<td>6</td>
<td>References</td>
<td>247</td>
</tr>
</tbody>
</table>
II.2 In Vitro Induction of Resistance to *Alternaria*
Leaf Blight Disease in *Carthamus tinctorius* L. (Safflower)
R.E. KNEUSEL and U. MATERN (With 3 Figures)

1 Introduction .. 250
2 Tissue Culture Studies on Safflower 254
3 Introduction of Resistance to *Alternaria carthami* 256
4 Summary and Conclusions .. 261
References .. 262

II.3 Somaclonal Variation in *Hypericum perforatum*
(St. John’s Wort)
E. ČELLÁROVÁ and K. BRUŇÁKOVÁ (With 6 Figures)

1 General Account ... 267
2 In Vitro Culture Studies ... 269
3 Somaclonal Variation .. 271
4 Summary and Conclusions ... 277
5 Protocol ... 277
References .. 278

II.4 Somaclonal Variation in *Lavatera* Species
J.M. IRIONDO and C. PÉREZ (With 9 Figures)

1 Introduction .. 280
2 In Vitro Culture Studies ... 282
3 Somaclonal Variation .. 283
4 Summary and Conclusions ... 293
References .. 293

II.5 Tobacco Somaclones Resistant to Tomato Spotted Wilt Virus
I.S. SCHERBATENKO and L.T. OLESCHENKO

1 Introduction .. 296
2 Somaclone Regeneration and Testing for Resistance 297
3 Tomato Spotted Wilt Virus Resistance in Tobacco Somaclones 297
4 Summary and Conclusions ... 303
References .. 303

II.6 Somaclonal Variation in Primula
M. KANDA (With 4 Figures)

1 Introduction .. 305
2 In Vitro Culture Studies ... 305
3 Somaclonal Variation .. 308
4 Summary and Conclusions ... 313
5 Protocol ... 313
References .. 313
II.7 Somaclonal Variation in Rauwolfia
V.A. KUNAKH (With 13 Figures)

1 Introduction ... 315
2 In Vitro Culture Studies 315
3 Somaclonal Variation 316
4 Summary and Conclusions 329
References .. 330

II.8 Somaclonal Variation in Scilla scilloides Complex
J.W. BANG and H.W. CHOI (With 9 Figures)

1 Introduction ... 333
2 In Vitro Culture and Plant Regeneration 334
3 Somaclonal Variation 335
4 Summary and Conclusions 343
5 Protocol .. 344
References .. 344

II.9 Somaclonal Variation in Zinnia
S.M. STIEVE and D.P. STIMART (With 2 Figures)

1 Introduction ... 346
2 In Vitro Culture 347
3 Somaclonal Variation 348
4 Summary and Conclusions 353
References .. 354

Subject Index .. 357
List of Contributors

AHMED, K.Z., Department of Genetics, Faculty of Agriculture, University of Minia, Minia 61517, Egypt

BANG, J.W., Department of Biology, College of Natural Sciences, Chungnam National University, Daejon 305-764, Korea

BELOUALY, N., Laboratoire de Cytogénétique, Université Catholique de Louvain, Place Croix-du-Sud 4, 1348 Louvain-la-Neuve, Belgium (Present address: SODEA, BP. 6280, Rabat, Morocco)

BHINH, D.Q., Former Scientist of Department of Genetics and Plant Breeding, University of Agricultural Sciences, 2103 Gödöllő, Hungary (Present address: Institute of Biology, CNRS, Nghiado-Tuliem, Hanoi, Vietnam)

BOUHARMONT, J., Laboratoire de Cytogénétique, Université Catholique de Louvain, Place Croix-du-Sud 4, 1348 Louvain-la-Neuve, Belgium

BRUŇÁKOVÁ, K., Department of Experimental Botany and Genetics, Faculty of Science, P.J. Šafárik University, Mánesova 23, 04154 Košice, Slovakia

BUTLER, L.G., Department of Biochemistry, Purdue University, West Lafayette, IN 47907-1153, USA

CAI, T., Department of Biochemistry, Purdue University, West Lafayette, IN 47907-1153, USA (Present address: Department of Biotechnology Research, Pioneer Hi-Bred International Inc., 7300 N.W. 62nd Avenue, P.O. Box 1004, Johnston, IA 50131-1004, USA)

CASSELLS, A.C., Department of Plant Science, University College, Cork, Ireland

ČELLÁROVÁ, E., Department of Experimental Botany and Genetics, Faculty of Science, P.J. Šafárik University, Mánesova 23, 04154 Košice, Slovakia
CHOI, H.W., Department of Biology, College of Natural Sciences, Chungnam National University, Daejon 305-764, Korea

DENG, Y.H., Institute of Crop Breeding and Cultivation, Chinese Academy of Agricultural Sciences, Beijing, 100081, China

DUCREUX, G., Morphogénèse Végétale Expérimentale, Bât. 360, Université Paris Sud, 91405 Orsay Cedex, France

DUNCAN, R.R., Department of Crop and Soil Science, University of Georgia, Georgia Station, Griffin, GA 30223-1797, USA

GODWIN, I.D., Department of Agriculture, The University of Queensland, Brisbane QLD, 4072, Australia

HAICOUR, R., Morphogénèse Végétale Expérimentale, Bât 360, Université Paris Sud, 91405 Orsay Cedex, France

HESZKY, L.E., Department of Genetics and Plant Breeding, University of Agricultural Sciences, 2103 Gödöllő, Hungary

IRIONDO, J.M., Departamento de Biología Vegetal, ETSI Agrónomos, Universidad Politécnica, 28040 Madrid, Spain

ISENHOUR, D.J., Department of Research Specialists, Pioneer Hi-Bred International, Box 85, Johnston, IA 50131-0085, USA

ISRAELI, Y., Jordan Valley Banana Experiment Station, Zemach 15132, Israel

JADARI, R., Institut Agronomique et Vétérinaire Hassan II, BP 6202, Morocco

KANDA, M., Laboratory of Floriculture, Chiba Horticultural Experiment Station, 1762 Yamamoto, Tateyama, Chiba 294, Japan

KNEUSEL, R.E., Biologisches Institut II, Lehrstuhl für Biochemie der Pflanzen, Albert-Ludwigs-Universität, Schänzlestr. 1, 79104 Freiburg, Germany

KUNAKH, V.A., Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kiev 252143, Ukraine

KUNOTHAI-MUHSIN, A., Southeast Asian Regional Centre for Tropical Biology (Seameo-Biotrop), J1 Raya Km 6, P.O. Box 116, Bogor, Indonesia
LAHAV, E., Institute of Horticulture, Agricultural Research Organization, The Volcani Center, P.O. Box 6, Bet Dagan 50250, Israel

LING, D.H., Department of Genetics, South China Institute of Botany, Academia Sinica, Guangzhou 510650, China

MATERN, U., Biologisches Institut II, Lehrstuhl für Biochemie der Pflanzen, Albert-Ludwigs-Universität, Schänzlestr. 1, 79104 Freiburg, Germany

MESTERHÁZY, Á., Cereal Research Institute, P.O. Box 391, 6701 Szeged, Hungary

NIIZEKI, M., Laboratory of Bioscience and Biotechnology, Faculty of Agriculture, Hirosaki University, Hirosaki, Aomori-ken 036, Japan

OCHATT, S.J., INRA, Station d'Amélioration des Espèces Fruitières et Ornementales, B.P. 57, 49071 Beaucouzé Cedex, France

OLESCHENKO, L.T., Department of Phytopathogenic Viruses, Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny Street 154, Kiev 252143, Ukraine

PÉREZ, C., Departamento de Biología Vegetal, ETSI Agrónomos, Universidad Politécnica, 28040 Madrid, Spain

REUVENI, O., Institute of Horticulture, Agricultural Research Organization, The Volcani Center, P.O. Box 6, Bet Dagan 50250, Israel

ROSSIGNOL, L., Morphogénèse Végétale Expérimentale, Bât. 360, Université Paris Sud, 91405 Orsay Cedex, France

SÁGI, F., Cereal Research Institute, P.O. Box 391, 6701 Szeged, Hungary

SAITO, K., Faculty of Pharmaceutical Sciences, Laboratory of Molecular Biology and Biotechnology, Research Center of Medicinal Resources, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba 263, Japan

SCHERBATENKO, I.S., Department of Phytopathogenic Viruses, Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny Street 154, Kiev 252143, Ukraine
SEN, P.T., Department of Plant Science, University College, Cork, Ireland

SIHACHAKR, D., Morphogénèse Végétale Expérimentale, Bât. 360, Université Paris Sud, 91405 Orsay Cedex, France

SIMON-KISS, I., Rice Breeding Section, Irrigation Research Institute, 5541 Szarvas, Hungary

STIEVE, S.M., Department of Horticulture, University of Wisconsin, 1575 Linden Drive, Madison, WI 53706, USA

STIMART, D.P., Department of Horticulture, University of Wisconsin, 1575 Linden Drive, Madison, WI 53706, USA

TAL, M., Department of Life Sciences, Ben Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel

TOYODA, H., Laboratory of Plant Pathology, Faculty of Agriculture, Kinki University, 3327-204 Nakamachi, Nara 631, Japan

WISEMAN, B.R., USDA-ARS, Insect Biology and Population Management Research Laboratory, P.O. Box 748, Tifton, GA 31793-0748, USA

YAMAZAKI, M., Faculty of Pharmaceutical Sciences, Laboratory of Molecular Biology and Biotechnology, Research Center of Medicinal Resources, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba 263, Japan

Zhou, H.S., Institute of Crop Breeding and Cultivation, Chinese Academy of Agricultural Sciences, Beijing, 100081, China