Sustainable water and soil management
Sabine Kunst, Tanja Kruse, Andrea Burmester, eds.

Library of Congress Cataloging-in-Publication Data
Sustainable water and soil management / Sabine Kunst, Tanja Kruse, Andrea Burmester, eds.
p.cm. Includes bibliographical references and index.

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law.

Springer-Verlag is a member of BertelsmannSpringer Science+Business Media GmbH

http://www.springer.de

DOI: 10.1007/978-3-642-59390-1
© Springer-Verlag Berlin Heidelberg 2002
Softcover reprint of the hardcover 1st edition 2002

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Product liability: The publishers cannot guarantee the accuracy of any information about the application of operative techniques and medications contained in this book. In every individual case the user must check such information by consulting the relevant literature.

Camera ready by authors
Cover design: design & production, Heidelberg
Printed on acid-free paper SPIN 10833667/3130/as 5 4 3 2 1 0
Foreword

Aylâ Neusel

The idea of holding an International Women’s University ifu as part of the EXPO 2000 World Exposition was born in Lower Saxony in the mid-1990s. In 1992, Lower Saxony’s then Minister of Science Helga Schuchardt had set up a Women’s Research Commission that in 1994 presented its report with the programmatic title “Promoting Women’s Interests Means Academic Reform – Women’s Research Means a Critique of Science”. A spin-off, so to speak, of this commission’s was the idea of a women’s university as an EXPO project. The 2nd Lower Saxony Women’s Research Commission (1995-1997) stated: "From 15 July until 15 October, an International Women’s University is to be organised offering an interdisciplinary, international, multimedia, postgraduate study programme".

Initially conceived as a purely research-oriented university, ifu evolved into an academic project for women scientists on an international scale. The ifu concept was based on the (self-) image of science as an ongoing, evolving, forward-looking research project.

The unique concept of the International Women’s University as an academic reform project was founded on three key principles:

1. Problem Orientation of Teaching and Research
 The choice of the globally relevant controversial issues Work – Information – Body – Migration – City – Water and the idea of addressing these issues from the perspective of the natural and engineering sciences, the humanities and social sciences as well as art, consciously focusing on questions of practical relevance, gave rise to a problem-oriented, interdisciplinary approach.

2. Promotion of Women’s Interests and Gender Perspective
 As a single-sex academic institution, ifu has introduced new effective ways of promoting networking and mentoring among young women scientists on an international scale. Gender perspective is a key element of research. Research topics, theories and methods are subjected to critical scrutiny, fundamental questions are asked about the role of science and academic institutions, and efforts are made to promote innovative approaches in science, academia and practice.

3. Transnationality and Interculturality
 ifu’s consistent application of the principle of internationality – both quantitatively in terms of the number of countries represented and qualitatively in terms of the international nature of the student body and faculty – is quite unique and has initiated a productive North-South dialogue among the women scientists involved. This comprehensive international discourse, incorporating intercultural forms of teaching and learning and addressing topics of global relevance, has helped participants to broaden their horizons, sharpen their critical faculties and question cultural and scientific certainties.
Between 15 July and 15 October 2000, a total of 747 women junior scientists from 105 different countries studied at the International Women’s University. The faculty staff consisted of 313 women lecturers and visiting scholars from 49 countries. In all, then, ifù brought together some 1,000 established women scientists from every continent in the world.

The study programme was conducted in English in co-operation with the University of Hannover (WORK, BODY, MIGRATION), the University of Hamburg (INFORMATION), the University of Kassel (CITY), the University of Bremen (sub-phase of the study programme BODY), at the University of Applied Sciences in Suderburg in co-operation with the University of Hannover (WATER), and with the collaboration of the University of Clausthal (WORK).

More than 60% of the junior scientists came from Africa, Asia, Latin America and Eastern Europe, 20% from Germany and the remainder from the USA, Australia, Canada and West European countries. 79% of junior scientists received a grant. 97% of junior scientists successfully completed their studies and obtained certification to this effect.

A project like the International Women’s University is not the brainchild of one individual: it owes its origin and genesis to a group of critical women scientists who succeeded in winning support among policymakers and the public for its implementation. Before reaching maturity, then, the idea passed through many minds and was subject to constant modification.

The present volume is the first in a series of publications presenting the results of ifù’s pilot semester to the international scientific community. My special thanks go to Sabine Kunst, Dean of the project area Water, and her scientific collaborators Andrea Burmester and Tanja Kruse for being the first to publish the results of the pilot semester.
Contents

List of Contributors .. XIV

Gendersensitive, Participatory Approach of Water and Soil Management

1 The International Women’s University – Framework for the Project
Area Water .. 1
Andrea Burmester, Tanja Kruse
1.1 The Future of Higher Education (Aims) ... 1
1.2 The International Women’s University and Intercultural Science 2
1.3 Junior Women Scientists ... 2
 1.3.1 Selection Process in the Project Area Water .. 3
 1.3.2 Profile of the Junior Scientists in the Project Area Water 4
 1.3.3 Catering to Participants’ Needs: Service Centre 5
1.4 ifu as a Platform for Global Dialogue ... 6

2 ifu – an Intercultural Innovation in Higher Education? 9
Vathsala Aithal
2.1 The Intercultural ifu ... 9
 2.1.1 Internationalisation or Parochialisation? .. 10
 2.1.2 The Socio-Political Context ... 11
 2.1.3 The Feminist Agenda .. 12
 2.1.4 Culture as Social Practice .. 14
 2.1.5 The Many Differences .. 15
 2.1.6 Intercultural Training at ifu .. 16
 2.1.7 The Interculturality of Knowledge Production ... 17
2.2 Conclusion .. 17
References ... 18

3 The Project Area Water ... 21
Sabine Kunst, Andrea Burmester, Tanja Kruse
3.1 Water is Life – Background Information .. 21
3.2 Feminist Perspectives at the Action Level ... 23
3.3 The Concept of the Project Area Water .. 24
3.4 Curriculum of the Project Area Water .. 26
 3.4.1 Knowledge Transfer .. 26
 3.4.2 Practical Projects .. 26
References ... 28
Aspects of Water and Soil Management

4 Rural Development with Special Emphasis on Women, Water and Environment

Leelamma Devasia

4.1 An Experiment in the Creation of Knowledge, Skills and Attitude

4.2 Feminisation of Water Management – an Indian Concept

4.2.1 India – the Land and People

4.2.2 Rural Women’s Participation in Water Management in Maharashtra State

4.2.3 An Alternative Vision Planned and Directed by Rural Women

4.3 An Interdisciplinary and International Approach to Rural Development within ifu

4.3.1 Women and Rural Development

4.3.2 Rural Women - Water and the Environment

4.3.3 Skill Development

4.3.4 Exposure to Different Realities, Field Trips and Excursions

4.4 The ifu Experiment as a Beginning of a New Endeavour

References

5 Water Treatment and Rainwater Harvesting

Namrata Pathak

5.1 Overview

5.2 Water Disinfection Methods

5.2.1 Physical and Chemical Methods

5.2.2 Biological Method

5.2.3 Bacterial Contamination

5.3 Rainwater Harvesting – Two Scenarios

5.4 Description of the Project

5.4.1 Presentation of Excursions

5.4.2 Results

5.5 Rainwater Harvesting Project Plan Developed by the Women Junior Scientists

5.5.1 Rainwater Harvesting for Household Consumption (Philippines by Angelica R. Martinez)

5.5.2 Case Study on Rainwater Harvesting (Albania by Gentiana Haxhillazi)

5.5.3 Rainwater Harvesting - A Proposal for Secondary Schools (Tanzania by Eng. Immaculata Nshange Raphael)

5.5.4 Rainwater Harvesting (USA by Margaret Fredricks)

5.5.5 Promotion of Rainwater Harvesting in the Arid Area (Cameroon by Michele Denise Akamba Ava, Maroua Salak)
5.5.6 Rainwater Harvesting Draft Plan for a Vegetable Garden (India by Nandini Sankampadi, Sanjulata Prasad).................. 84
5.5.7 Rainwater Harvesting Plan for Loyola College (Nigeria by Theresa Odejayi, Yetunde Odeyemi, Helen Oloyede) .. 86
5.6 Summary .. 88
References ... 89

6 Wastewater Treatment ... 91
Sabine Kunst, Artur Mennerich, Marc Wichern
6.1 Mechanical Wastewater Treatment.. 92
6.1.1 Overview .. 92
6.1.2 Rakes and Strainers .. 92
6.1.3 Sand Catchers ... 94
6.1.4 Preliminary Treatment/Settling Tank ... 97
6.2 Biological Wastewater Treatment.. 100
6.2.1 Overview .. 100
6.2.2 Legal Requirements for Wastewater Treatment in Europe 101
6.3 Models for the Design and Simulation of Wastewater Treatment Plants (WWTPs) ... 112
6.3.1 Overview .. 112
6.3.2 Dynamic Models .. 118
6.3.3 Use of Computer Programs .. 121
6.4 Evaluation of Centralised Wastewater Treatment.......................... 123
6.4.1 Comparison of Wastewater Treatment Plants 127
6.4.2 Conclusions .. 131
References ... 135

7 Decentralised Wastewater Treatment - Wastewater Treatment in Rural Areas .. 137
Katrin Kayser, Sabine Kunst
7.1 Situation ... 137
7.1.1 Principles and Spheres of Action ... 138
7.1.2 Decentralisation and User Participation 139
7.2 Nature-Based Wastewater and Sludge Treatment Methods as Components of Sustainable Concepts in Rural Regions
 – State of the Art .. 141
7.2.1 Introduction .. 141
7.2.2 Overview - Wastewater Quantities and Wastewater Agents in Rural Areas ... 142
7.2.3 Pre-Treatment .. 144
7.2.4 Planted Soil Filters ... 146
7.2.5 Wastewater Lagoons .. 153
7.2.6 Sludge Composting in Reed Beds .. 156
7.2.7 Practical Examples ... 159
7.3 Conclusions for Design Parameters ... 164
 7.3.1 Characteristics of Decentralised Wastewater Treatment Systems which are Conducive to Sustainable Development 168
 7.3.2 Impact of Gender Perspectives on Planning Criteria 169
 7.4 Examples of Planning Ideas ... 172
 7.4.1 Wastewater Purification for Remote Villages 173
 7.4.2 Planning Ideas for Sensitive Regions in Rural Areas 176
 References ... 180

8 Alternative Technologies for Sanitation, Recycling and Reuse 183
 Sabine Kunst, Namrata Pathak
 8.1 Overview .. 183
 8.2 The Composting Process ... 186
 8.2.1 The Phases ... 186
 8.2.2 Environmental Factors in Composting 187
 8.2.3 Composting Micro-Organisms .. 190
 8.2.4 Quality Criteria for Compost as a Product 193
 8.3 Types of Toilets ... 194
 8.3.1 Water Toilets .. 194
 8.3.2 Waterless Toilets ... 195
 8.4 Composting Toilet Systems ... 196
 8.4.1 Dimensioning Composting Toilets .. 196
 8.4.2 Dry Sanitation with Reuse .. 198
 8.4.3 Dehydration Toilets ... 201
 8.4.4 Decomposition Toilets ... 204
 8.4.5 Types of Composting Toilet Systems 207
 8.5 SIRDO ... 211
 8.5.1 Pathogens Elimination ... 214
 8.5.2 Social Evaluation ... 216
 References ... 219

9 River Development Planning .. 219
 Andrea Töppe
 9.1 River Protection for the Balance of Nature 219
 9.2 Hydraulics and River Protection .. 222
 9.2.1 Some River Characteristics ... 222
 9.2.2 River Discharge .. 223
 9.2.3 The River Protection System of Lower Saxony/Germany 229
 9.2.4 Making an Inventory in Situ .. 231
 9.3 Stahlbach River Development Plan .. 236
 9.3.1 The Elbe Catchment Area ... 237
 9.3.2 The Stahlbach River .. 239
 9.3.3 River Stahlbach Development Project (Project Modules) 239
 9.3.4 Results ... 241
 9.4 Summary .. 256
 References ... 258
Contents XI

10 Water and Soil Towards Sustainable Land Use ... 261
 Brigitte Urban
 10.1 Overview .. 261
 10.1.1 Soils ... 261
 10.1.2 Soil and Water ... 264
 10.1.3 Global Significance ... 267
 10.2 Project Water and Soil .. 267
 10.2.1 Skills and Aims ... 267
 10.2.2 Stahlbach Creek Project .. 268
 10.2.3 Methodology .. 269
 10.3 Results of The Project ... 270
 10.3.1 Case Study: River Elbe Ecology Project 270
 10.3.2 Description and Results of the Three Project Sites 277
 10.4 Summary ... 287
 10.4.1 Intergroup Interferences ... 287
 References ... 291

Conclusions

11 Evaluation “There is No Unanimous Judgement on ifu” 295
 Sigrid Metz-Göckel
 11.1 Evaluation Concept ... 295
 11.2 Bridging the Gap Between Mutually Unfamiliar Disciplines and Socio-Technical Innovation ... 297
 11.2.1 Curriculum of the Project Area Water 297
 11.2.2 Evaluation of the Curriculum from the Perspective of the Junior Scientists ... 298
 11.2.3 From the Perspective of the Visiting Scholars: “You Can Feel It in the Air” ... 303
 11.2.4 Description of the Study Venue – the Environment from the Perspective of the Junior scientists ... 306
 11.3 Incongruity of the Perspectives: A Summary 307
 References ... 308

12 Future Perspectives for Sustainable Water and Soil Management 309
 Sabine Kunst
 12.1 Internationality and Intercultural Work .. 310
 12.2 Interdisciplinary Work and Gender Perspectives 312
 12.3 Women’s International Network for Sustainability: A Post-ifu Initiative Promoting Equitable and Ecologically Sound Alternatives to Mainstream Development ... 315
 12.3.1 “Development is Well-Being – Concerning the Individual as well as the Community Level – for the Past, Present and Future.” (Andrea Heckert, U.S./Mexico) ... 315

References
12.3.2 “What Should I Say? Now We Are Developed?”
(Christobel Chakwana, Malawi) ...316
12.3.3 “...I Would Like to Have a Computer, this Would Empower Me.” (Arig Bakhiet, Sudan) ...317
References ...317

Appendices

13 Manual for Analysis of Soils and Related Materials321
Brigitte Urban
13.1 Introduction to Soil Exploration and Soil Sampling321
13.2 Moisture Content and Dry Weight ..322
13.3 Determination of Organic Matter ..324
13.4 Determination of pH ..325
13.5 Salinity of Soils (Electric Conductivity, EC)326
13.6 Cress Test (Germinability of Lepidium sativum)328
13.7 Determination of Total Amount of Micro-organisms in Solids (Microbial Number) ..329
13.8 Soil Respiration, Biological Oxygen Demand (BOD)334
13.9 Respiration Activity of Compost ..336
13.10 Carbon Content ..338
13.11 Determination of Nitrogen (Kjeldahl Procedure)339
13.12 C/N and C/P Ratio ..341
13.13 Determination of Carbonate ...342
13.14 Determination of Plant-Available Phosphorus and Potassium344
13.15 Determination of Plant-Available Potassium and Magnesium (diluted with Calcium Chloride)..347
13.16 Determination of N – min (NO₃ and NO₂)348
13.17 Determination of N-min (NH₄) ..351
13.18 Determining Exchangeable Cations at Soil pH352
13.19 Nitrohydrochloric Acid Disintegration ..356
13.20 Sewage Sludge Regulations ..357
13.21 Elution with Water ..358
13.22 Soil Moisture Retention Capacity, pF Value359
13.23 Soil Texture (Grain Size Distribution) ..362
13.24 Grain Fractions and Texture Types ...366
References ...369

14 Influencing BOD and N Removal Assessment of Important Parameters ...371
Sabine Kunst
14.1 Batch Tests as a Method for Classifying Nitrification and Denitrification Activities in Activated Sludge ..371
14.1.1 Batch Tests for Nitrification (Aerobic)371
14.1.2 Batch Tests for Denitrification (Anoxic)373
<table>
<thead>
<tr>
<th>Contents</th>
<th>XIII</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.2 Respirometry: Determination of the Oxygen Uptake Rate (OUR)</td>
<td>375</td>
</tr>
<tr>
<td>14.2.1 Determination of the Respiration Rate of Activated Sludge by Measuring the O₂ Utilisation Rate</td>
<td>376</td>
</tr>
<tr>
<td>14.2.2 Evaluation of the Recorded Data</td>
<td>377</td>
</tr>
<tr>
<td>14.2.3 Dependence of Oxygen Consumption on Toxic or Inhibiting Substances in Water</td>
<td>378</td>
</tr>
<tr>
<td>14.2.4 Further Applications for Oxygen-Consumption Measurements</td>
<td>378</td>
</tr>
<tr>
<td>Vitae of Contributors</td>
<td>381</td>
</tr>
<tr>
<td>Index</td>
<td>383</td>
</tr>
</tbody>
</table>
List of Contributors

Aithal, Vathsala, M.A.
Fachbereich Cornelia Goethe Center, Johann Wolfgang Goethe Universität
Postfach 11 19 32, 60054 Frankfurt am Main, Germany
Email: aithal@em.uni-frankfurt.de

Burmester, Andrea, Dipl.-Ing.
Project Area Water, International Womens University ifu
Wesselstraße 24, 30449 Hannover, Germany
Email: burmester@isah.uni-hannover.de

Devasia, Leelamma, Dr.
F - 2, Krishna Ganga, Temple Road, Civil Lines
Nagpur – 440001, India
Email: dearchu@nagpur.dot.net.in

Kayser, Katrin, Dipl.-Ing.
Institut für Siedlungswasserwirtschaft und Abfalltechnik Hannover ISAH,
Universität Hannover
Welfengarten 1, 30167 Hannover, Germany
Email: kayser@isah.uni-hannover.de

Kruse, Tanja, Dipl.-Päd.
Project Area Water, International Womens University ifu
Hinrichsring 26, 30177 Hannover, Germany
Email: kruse@vifu.de

Kunst, Sabine, Prof. Dr.-Ing. habil. Dr. phil.
Institut für Siedlungswasserwirtschaft und Abfalltechnik Hannover ISAH,
Universität Hannover
Welfengarten 1, 30167 Hannover, Germany
Email: kunst@isah.uni-hannover.de

Mennerich, Artur, Prof. Dr.-Ing.
Fachhochschule Nordostniedersachsen
Herbert-Meyer-Str. 7, 29556 Suderburg, Germany
Email: a.mennerich@fhnon.de

Metz-Göckel, Sigrid, Prof. Dr.
Hochschuldidaktisches Zentrum, Universität Dortmund
Vogelpothsweg 78, 44227 Dortmund, Germany
Email: smetzgoeckel@hdz.uni-dortmund.de

Pathak, Namrata, Dr.
Centre for rural Development and Technology, Indian Institute of Technology
Hauzkhas, New Delhi - 110 016, India
Email: namratapathak@hotmail.com

Töppe, Andrea, Prof. Dr.-Ing.
Fachhochschule Nordostniedersachsen
Herbert-Meyer-Str. 7, 29556 Suderburg, Germany
Email: toeppe@fhnon.de
Urban, Brigitte, Prof. Dr. rer. nat.
Fachhochschule Nordostniedersachsen
Herbert-Meyer-Str. 7, 29556 Suderburg, Germany
Email: urban@fhnon.de

Wichern, Marc, Dr.-Ing.
Institut für Siedlungswasserwirtschaft und Abfalltechnik Hannover ISAH,
Universität Hannover,
Welfengarten 1, 30167 Hannover, Germany
Email: wichern@isah.uni-hannover.de

Wittberger, Dolly, Dr.
Women’s International Network for Sustainability - WINS
Mandellstrasse 21/10, A-8010 Graz, Austria
Email: dollyindia@hotmail.com http://www.wins.at