Editorial Board

David Hutchison
 Lancaster University, UK

Takeo Kanade
 Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
 University of Surrey, Guildford, UK

Jon M. Kleinberg
 Cornell University, Ithaca, NY, USA

Alfred Kobsa
 University of California, Irvine, CA, USA

Friedemann Mattern
 ETH Zurich, Switzerland

John C. Mitchell
 Stanford University, CA, USA

Moni Naor
 Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
 University of Bern, Switzerland

C. Pandu Rangan
 Indian Institute of Technology, Madras, India

Bernhard Steffen
 TU Dortmund University, Germany

Madhu Sudan
 Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
 University of California, Los Angeles, CA, USA

Doug Tygar
 University of California, Berkeley, CA, USA

Gerhard Weikum
 Max Planck Institute for Informatics, Saarbruecken, Germany
Algorithms for Sensor Systems

Ljubljana, Slovenia, September 13-14, 2012
Revised Selected Papers
Preface

Wireless ad hoc sensor networks have recently become a very active research subject because of their high potential of providing diverse services to numerous important applications, including remote monitoring and tracking in environmental applications and low-maintenance ambient intelligence in everyday life. The effective and efficient realization of such large-scale, complex ad-hoc networking environments requires intensive, coordinated technical research and development efforts, especially in power-aware, scalable, robust wireless distributed protocols, owing to the unusual application requirements and the severe resource constraints of the sensor devices. On the other hand, a solid foundational background seems necessary for sensor networks to achieve their full potential. It is a challenge for abstract modeling, algorithmic design and analysis to achieve provably efficient, scalable, and fault-tolerant realizations of such huge, highly dynamic, complex, nonconventional networks. Features including the extremely large number of sensor devices in the network, the severe power, computing, and memory limitations, their dense, random deployment and frequent failures, pose new interesting abstract modeling, algorithmic design, analysis and implementation challenges of great practical impact. ALGOSENSORS aims to bring together research contributions related to diverse algorithmic and complexity theoretic aspects of wireless sensor networks.

Starting in 2011, ALGOSENSORS broadened its thematic scope, keeping its focus on sensor networks, but also including other related types of ad hoc wireless networks, such as mobile networks, radio networks, and distributed systems of robots. Papers are solicited into two tracks, one on Sensor Networks (Track A) and one on Ad Hoc Wireless and Mobile Systems (Track B). Furthermore, the status of the event has been upgraded to a symposium and its length extended to two days. ALGOSENSORS 2012, the 8th International Symposium on Algorithms for Sensor Systems, Wireless Ad Hoc Networks and Autonomous Mobile Entities, was held in Ljubljana, Slovenia, during September 13–14, 2012.

In 2012, there were 24 submissions to ALGOSENSORS: 14 to track A and ten to track B. After a careful selection procedure by the (joint) Program Committee (involving at least four reviews for each paper and five reviews for the vast majority papers, and fruitful discussions), 11 papers were accepted as full papers: five of them from track A and six of them from track B. In addition, two papers from track B were accepted as brief announcements. This volume contains these papers as well as summaries of the two keynote talks.

The five papers in Track A (Sensor Networks) present original research on topics such as barrier resilience, localization, connectivity with directional antennas, broadcast scheduling, and data aggregation. The topics covered by the
six papers in Track B (Ad hoc Wireless and Mobile Systems) include the SINR model, geometric routing, cognitive radio networks, video delivery, and mapping polygons.

We would like to warmly thank the ALGO/ESA 2012 organizers for kindly accepting the proposal of the Steering Committee to co-locate ALGOSENSORS with some of the leading events on algorithms in Europe. Also, we thank the keynote speakers Subhash Suri and Thomas Kesselheim for accepting our invitation. Many thanks go to the Program Committee members for their dedicated contribution toward a strong program.

October 2012

Amotz Bar-Noy
Magnús M. Halldórsson
Organization

Steering Committee

Josep Diaz
Polytechnic University of Catalonia, Spain
Bhaskar Krishnamachari
University of Southern California, USA
P.R. Kumar
University of Illinois, Urbana-Champaign, USA
Jan van Leeuwen
University of Utrecht, The Netherlands
Sotiris Nikoletseas
University of Patras and CTI, Greece
Jose Rolim
University of Geneva, Switzerland
Paul Spirakis
University of Patras and CTI, Greece

Program Committee

Track A Chair: Amotz Bar-Noy
City University of New York, USA
Track B Chair: Magnús M. Halldórsson
Reykjavik University, Iceland

Nikhil Bansal
Eindhoven Institute of Technology, The Netherlands
Prithwish Basu
BBN Technologies, USA
Shlomi Dolev
Ben Gurion University, Israel
Leah Epstein
University of Haifa, Israel
Thomas Erlebach
University of Leicester, UK
Guy Even
Tel Aviv University, Israel
Sándor Fekete
University of Technology, Braunschweig, Germany
Pierre Fraigniaud
CNRS and University of Paris Diderot, France
Jie Gao
SUNY Stony Brook, USA
Ramesh Govindan
University of South California, USA
Samir Khuller
University of Maryland, USA
Danny Krizanc
Wesleyan University, USA
Fabian Kuhn
University of Lugano, Switzerland
Pekka Orponen
Aalto University, Finland
Marina Papatriantafilou
Chalmers University of Technology, Sweden
Sriram Pemmaraju
University of Iowa, USA
Yvonne Anne Pignolet
ABB Research Laboratory, Switzerland
Geppino Pucci
Università di Padova, Italy
Dror Rawitz
Tel Aviv University, Israel
Christian Scheideler
Universität Paderborn, Germany
Stefan Schmid
Technische Universität Berlin, Germany
Mani Srivastava
UCLA, USA
Jukka Suomela
University of Helsinki, Finland
VIII Organization

Subhash Suri UCSB, USA
Takeshi Tokuyama Tohoku University, Japan
Amy Y. Wang Tsinghua University, China

Additional Referees

Benny Applebaum Thomas Kesselheim Xi Ming Li
Sebastian Daum Hamed Khanmirza Adrian Ogierman
Michael Dinitz Matias Korman Alberto Pettarin
Stefan Dobrev Andreas Koutsopoulos Andrea Pietracaprina
Carlo Fantozzi Alexander Kröller Moni Shahar
Vincenzo Gulisano Olaf Landsiedel Francesco Silvestri
Henning Hasemann Asaf Levin Sriram Venkateswaran
Csanád Imreh Ximing Li Stephan Wenger
Table of Contents

Approximation Algorithms for Wireless Spectrum Allocation with Power Control ... 1
Thomas Kesselheim

Geometric Computing over Uncertain Data 4
Subhash Suri

Packing Resizable Items with Application to Video Delivery
over Wireless Networks ... 6
Sivan Albagli-Kim, Leah Epstein, Hadas Shachnai, and Tami Tamir

Symmetric Connectivity with Directional Antennas................. 18
Rom Aschner, Matthew J. Katz, and Gila Morgenstern

Comparative Study of Approximation Algorithms and Heuristics
for SINR Scheduling with Power Control .. 30
Lukas Belke, Thomas Kesselheim, Arie M.C.A. Koster, and Berthold Vöcking

Approximating Barrier Resilience for Arrangements of Non-identical
Disk Sensors .. 42
David Yu Cheng Chan and David Kirkpatrick

A Unified View to Greedy Geometric Routing Algorithms in Ad Hoc
Networks ... 54
Jinhee Chun, Akiyoshi Shioura, Truong Minh Tien, and Takeshi Tokuyama

Big Data Interpolation an Efficient Sampling Alternative for Sensor
Data Aggregation (Extended Abstract) ... 66
Hadassa Daltrophe, Shlomi Dolev, and Zvi Lotker

Mapping a Polygon with Holes Using a Compass 78
Yann Disser, Subir Kumar Ghosh, Matúš Mihalák, and Peter Widmayer

METRIC DIMENSION for Gabriel Unit Disk Graphs Is NP-Complete 90
Stefan Hoffmann and Egon Wanke

Pseudo-scheduling: A New Approach to the Broadcast Scheduling
Problem .. 93
Shaun N. Joseph and Lisa C. DiPippo
Self-stabilizing TDMA Algorithms for Dynamic Wireless Ad-Hoc Networks .. 105
 Pierre Leone and Elad Michael Schiller

Complexity of Connectivity in Cognitive Radio Networks through Spectrum Assignment .. 108
 Hongyu Liang, Tiancheng Lou, Haisheng Tan,
 Amy Yuexuan Wang, and Dongxiao Yu

On Some Bounds on the Optimum Schedule Length in the SINR Model .. 120
 Tigran Tonoyan

Polynomial Time Approximation Algorithms for Localization Based on Unknown Signals .. 132
 Johannes Wendeberg and Christian Schindelhauer

Author Index .. 145