Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
 Lancaster University, UK
Takeo Kanade
 Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler
 University of Surrey, Guildford, UK
Jon M. Kleinberg
 Cornell University, Ithaca, NY, USA
Alfred Kobsa
 University of California, Irvine, CA, USA
Friedemann Mattern
 ETH Zurich, Switzerland
John C. Mitchell
 Stanford University, CA, USA
Moni Naor
 Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz
 University of Bern, Switzerland
C. Pandu Rangan
 Indian Institute of Technology, Madras, India
Bernhard Steffen
 TU Dortmund University, Germany
Madhu Sudan
 Microsoft Research, Cambridge, MA, USA
Demetri Terzopoulos
 University of California, Los Angeles, CA, USA
Doug Tygar
 University of California, Berkeley, CA, USA
Gerhard Weikum
 Max Planck Institute for Informatics, Saarbruecken, Germany
Computational logistics refers to the planning and implementation of logistics tasks using computations and advanced decision support. It covers significant work regarding theory and application of systems and methodologies for advancing planning and operations in logistics. It is applied in various areas including the flow and storage of goods or services as well as related information from their source to their destination. Typically, optimization models and algorithms are developed, verified, and applied for planning and executing complex logistics tasks, e.g., for finding the most efficient scheduling/plan for the transport of passengers or goods. These models and algorithms are integrated with advanced information and communication technology (IT) to obtain satisfactory results in appropriate time even for large-scale problem instances and providing interactivity, visualization, etc. for a better understanding, problem solution, and decision support. Furthermore, computational logistics involves the use of information systems and modern IT tools for the design, planning, and control of logistics networks as well as the complex tasks within them.

The International Conference on Computational Logistics (ICCL) provides an opportunity for researchers and practitioners in the field of computational logistics to present their latest results and findings in a fruitful and open-minded environment. This volume of Lecture Notes in Computer Science consists of selected papers presented at the 3rd International Conference on Computational Logistics, held at the Shanghai Jiao Tong University in Shanghai, China, September 24–26, 2012.

The ICCL 2012 was the third of its kind. The first was held in 2010, also in Shanghai, and the second one in Hamburg, Germany (see Volume 6971 of the LNCS). The idea of inviting participants to go back to Shanghai was motivated by the fact that computational logistics has become very visible in Shanghai with continuous developments to be seen in action. As a port city, Shanghai has moved from record to record, e.g., regarding container turnover, making it the largest port worldwide in that respect. For instance, Yangshan Deepsea Water Container Terminal upgraded its ranking in the world, increasing research interests to a great extent; Zhenhua Port Machinery Corporation (ZPMC) has developed advanced terminal handling systems based on information system design, matching very much the scope of the ICCL. Moreover, Hongqiao Airport Terminal II has applied advanced engineering management mechanisms, inspiring further research on computational logistics; an underground logistics system has been researched in Shanghai for a few years and is expected to be implemented in the near future. Technical excursions to these places, together with the academic submissions included in this special issue, brought the participants the flavor of the state of the art of computational logistics and its scientific outputs and implementations as well as applications.
The contributions presented at the conference as well as the papers in these proceedings show that computational logistics are gaining more and more importance in various areas. Academics as well as practitioners are deeply involved in the development of the field, which is going from strength to strength. This is well reflected in the advances seen in the contributions presented at the conference as well as the selected papers in these proceedings. Following the focus of the papers accepted, we grouped the contributions into four parts as follows:

- Part I: Maritime Shipping
- Part II: Logistics and Supply Chain Management
- Part III: Planning and Operations
- Part IV: Case Studies

While we believe that these proceedings provide insights into the state of the art of the field, we also hope and know that the story is never-ending. That is, new advances on different levels are expected, taking into consideration innovations in all areas of computational logistics, building upon what we have developed.

Organizing a conference and publishing the proceedings is a task that relies on the help and support of many people in various roles. Many thanks go to all the authors and presenters for their contributions. In addition, we greatly appreciate the valuable help and cooperation of the members of the international program committee and the referees. While preparing the conference and compiling the proceedings we also received enthusiastic support from Julia Bachale (IWI Hamburg) as well as the team of local organizers in Shanghai.

September 2012
Hao Hu
Xiaoning Shi
Robert Stahlbock
Stefan Voß
Organization

Organization Chair

Hao Hu
Shanghai Jiao Tong University, China
Stefan Voß
University of Hamburg, Germany

Organization Committee

Xiaoning Shi
Shanghai Jiao Tong University, China, and
University of Hamburg, Germany
Robert Stahlbock
University of Hamburg, Germany, and
FOM University of Applied Sciences,
Essen/Hamburg, Germany

Program Committee and Referees

Jürgen W. Böse
Hamburg University of Technology, Germany
Buyang Cao
Tongji University Shanghai, China
Marco Caserta
IE Business School Madrid, Spain
José Ceroni
Pontificia Universidad Católica de Valparaíso, Chile
Marielle Christiansen
Norwegian University of Science and
Technology, Norway
Joachim R. Daduna
Berlin School of Economics and Law, Germany
Kjetil Fagerholt
Norwegian University of Science and
Technology, Norway
Janusz Granat
National Institute of Telecommunications
Warsaw, Poland
Hans-Otto Günther
TU Berlin, Germany
Kai Gutenschwager
University of Applied Sciences Ulm, Germany
Hans-Dietrich Haasis
ISL Bremen, Germany
Richard F. Hartl
University of Vienna, Austria
Geir Hasle
SINTEF Applied Mathematics Department of
Optimisation, Norway
Sin C. Ho
Aarhus University, Denmark
Rune Møller Jensen
IT University of Copenhagen, Denmark
Herbert Kopfer
University of Bremen, Germany
Gilbert Laporte
HEC Montréal, Canada
Hoong Chuin Lau
Singapore Management University, Singapore
Janny Leung
Chinese University of Hong Kong, China
<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hong K. Lo</td>
<td>Hong Kong University of Science and Technology, China</td>
</tr>
<tr>
<td>Arne Løkketangen</td>
<td>Molde College, Norway</td>
</tr>
<tr>
<td>André Ludwig</td>
<td>University of Leipzig, Germany</td>
</tr>
<tr>
<td>Belén Melián-Batista</td>
<td>University of La Laguna, Spain</td>
</tr>
<tr>
<td>João Lemos Nabais</td>
<td>Setúbal School of Technology, Portugal</td>
</tr>
<tr>
<td>Rudy Negenborn</td>
<td>Delft University of Technology, Netherlands</td>
</tr>
<tr>
<td>Dario Pacino</td>
<td>IT University of Copenhagen, Denmark</td>
</tr>
<tr>
<td>Helena Ramalhinho Lourenco</td>
<td>Universitat Pompeu Fabra, Barcelona, Spain</td>
</tr>
<tr>
<td>Juan José Salazar González</td>
<td>University of La Laguna, Spain</td>
</tr>
<tr>
<td>Silvia Schwarze</td>
<td>University of Hamberg, Germany</td>
</tr>
<tr>
<td>Hans-Jürgen Sebastian</td>
<td>RWTH Aachen, Germany</td>
</tr>
<tr>
<td>Xiaoning Shi</td>
<td>Shanghai Jiao Tong University, China, and</td>
</tr>
<tr>
<td></td>
<td>University of Hamburg, Germany</td>
</tr>
<tr>
<td>Grazia Speranza</td>
<td>Brescia University, Italy</td>
</tr>
<tr>
<td>Robert Stahlbock</td>
<td>University of Hamburg, Germany</td>
</tr>
<tr>
<td>Wai Yuen Szeto</td>
<td>University of Hong Kong, China</td>
</tr>
<tr>
<td>David Woodruff</td>
<td>University of California (Davis), USA</td>
</tr>
<tr>
<td>Tsz Leung Yip</td>
<td>Hong Kong Polytechnic University, China</td>
</tr>
</tbody>
</table>
Table of Contents

Maritime Shipping

The Liner Shipping Fleet Repositioning Problem with Cargo Flows........... 1
Kevin Tierney and Rune Møller Jensen

An Accurate Model for Seaworthy Container Vessel Stowage Planning
with Ballast Tanks .. 17
Dario Pacino, Alberto Delgado, Rune Møller Jensen, and Tom Bebbington

Scientometric Analysis of Container Terminals and Ports Literature
and Interaction with Publications on Distribution Networks 33
Silvia Schwarze, Stefan Voß, Guohua Zhou, and Guoli Zhou

A Novel Predictive Control Based Framework for Optimizing
Intermodal Container Terminal Operations 53
João Lemos Nabais, Rudy R. Negenborn, and Miguel Ayala Botto

Impact of Port Disruption on Supply Chains: A Petri Net Approach.... 72
Jasmine Siu Lee Lam and Tsz Leung Yip

Extended Mis-overlay Calculation for Pre-marshalling Containers 86
Stefan Voß

Logistics and Supply Chain Management

Solving the Two-Stage Capacitated Facility Location Problem by the
Lagrangian Heuristic ... 92
Igor Litvinchev and Edith Lucero Ozuna Espinosa

Applying Radio Frequency Identification Technology in Retail Trade
from a Logistics Point of View – An Overview over Opportunities and
Limitations .. 104
Joachim R. Daduna

Solving Vehicle Routing with Full Container Load and Time
Windows ... 120
Line Blander Reinhardt, Simon Spoorendonk, and David Pisinger

Planning and Operations

Multi-item Simultaneous Lot Sizing and Storage Allocation with
Production and Warehouse Capacities 129
Cagatay Iris and Mehmet Mutlu Yenisey
Planning Maritime Logistics Concepts for Offshore Wind Farms: A Newly Developed Decision Support System
Kerstin Lange, André Rinne, and Hans-Dietrich Haasis

Application of Cycle-Based Simulation to Estimate Loss of Logistics Productivity on Construction Sites
Feng Xu, Yuanbin Song, and Hao Hu

Benchmarking European Airports Based on a Profitability Envelope: A Break-Even Analysis
Branko Bubalo

Case Studies

Solving Vehicle Routing Problems Using an Enhanced Clarke-Wright Algorithm: A Case Study
Buyang Cao

An Insertion Heuristic Manpower Scheduling for In-Flight Catering Service Application
San-Nah Sze, Ada Ng Suk-Fong, and Kang-Leng Chiew

Author Index