International Association of Geodesy Symposia

Michael G. Sideris, Series Editor

Symposium 101: Global and Regional Geodynamics
Symposium 102: Global Positioning System: An Overview
Symposium 103: Gravity, Gradiometry, and Gravimetry
Symposium 104: Sea Surface Topography and the Geoid
Symposium 105: Earth Rotation and Coordinate Reference Frames
Symposium 106: Determination of the Geoid: Present and Future
Symposium 107: Kinematic Systems in Geodesy, Surveying, and Remote Sensing
Symposium 108: Application of Geodesy to Engineering
Symposium 109: Permanent Satellite Tracking Networks for Geodesy and Geodynamics
Symposium 110: From Mars to Greenland: Charting Gravity with Space and Airborne Instruments
Symposium 111: Recent Geodetic and Gravimetric Research in Latin America
Symposium 112: Geodesy and Physics of the Earth: Geodetic Contributions to Geodynamics
Symposium 113: Gravity and Geoid
Symposium 114: Geodetic Theory Today
Symposium 115: GPS Trends in Precise Terrestrial, Airborne, and Spaceborne Applications
Symposium 116: Global Gravity Field and Its Temporal Variations
Symposium 117: Gravity, Geoid and Marine Geodesy
Symposium 118: Advances in Positioning and Reference Frames
Symposium 119: Geodesy on the Move
Symposium 120: Towards an Integrated Global Geodetic Observation System (IGGOS)
Symposium 121: Geodesy Beyond 2000: The Challenges of the First Decade
Symposium 122: IV Hotine-Marussi Symposium on Mathematical Geodesy
Symposium 123: Gravity, Geoid and Geodynamics 2000
Symposium 124: Vertical Reference Systems
Symposium 125: Vistas for Geodesy in the New Millennium
Symposium 126: Satellite Altimetry for Geodesy, Geophysics and Oceanography
Symposium 127: V Hotine Marussi Symposium on Mathematical Geodesy
Symposium 128: A Window on the Future of Geodesy
Symposium 129: Gravity, Geoid and Space Missions
Symposium 130: Dynamic Planet - Monitoring and Understanding …
Symposium 131: Geodetic Deformation Monitoring: From Geophysical to Engineering Roles
Symposium 132: VI Hotine-Marussi Symposium on Theoretical and Computational Geodesy
Symposium 133: Observing our Changing Earth
Symposium 134: Geodetic Reference Frames
Symposium 135: Gravity, Geoid and Earth Observation
Symposium 136: Geodesy for Planet Earth
Symposium 137: VII Hotine-Marussi Symposium on Mathematical Geodesy
Reference Frames for Applications in Geosciences

Proceedings of the Symposium in Marne-La-Vallée,
4–8 October, 2010

Edited by

Zuheir Altamimi
Xavier Collilieux

Springer
Claude Boucher
Observatoire de Paris/SYRTE
claude-boucher@club-internet.fr

David Coulot
Institut national de l’information géographique et forestière
Laboratoire de recherche en géodésie
Université Paris Diderot
Paris, France
David.Coulot@ign.fr

Mike Craymer
Natural Resources Canada
Geodetic Survey Division
Ottawa, Ontario, Canada
Michael.Craymer@NRCan-RNCan.gc.ca

Richard S. Gross
Jet Propulsion Laboratory
Pasadena, California, USA
Richard.Gross@jpl.nasa.gov

Johaness Ihde
Federal Agency of Cartography and Geodesy
Richard-Strauss-Allee 11,
D-60598 Frankfurt am Main, Germany
johannes.ihde@bkg.bund.de

Frank Lemoine
NASA Goddard Space Flight Center
Planetary Geodynamics Laboratory
Greenbelt, Maryland U.S.A.
Frank.G.Lemoine.nasa.gov

Markus Rothacher
ETH Zurich
Institute of Geodesy and Photogrammetry
HPV G52 Schafmattstr. 34
CH-8093 Zurich, Switzerland
markus.rothacher@ethz.ch

Harald Schuh
Helmholtz-Zentrum Potsdam
DeutschesGeoForschungsZentrum GFZ
Telegrafenberg, A17
14473 Potsdam
Germany
harald.schuh@tuwien.ac.at

Michael G. Sideris
University of Calgary
Department of Geomatics Engineering
2500 University Drive N.W.
Calgary, Alberta T2N 1N4 Canada
sideris@ucalgary.ca

Peter Steigenberger
Technische Universität München
Institut für Astronomische und Physikalische Geodäsie
Munich, Germany
steigenberger@bv.tum.de

João Agria Torres
National Committee on Astronomy, Geodesy and Geophysics
Lisbon, Portugal
jatorres@iol.pt
Reference systems and frames are of primary importance for many Earth science applications, satellite navigation as well as for practical applications in geo-information. A precisely defined reference frame is needed for the quantification of, e.g. Earth rotation and its gravity field, global and regional sea level variation, tectonic motion and deformation, postglacial rebound, geocenter motion, large-scale deformation due to Earthquakes, local subsidence and other ruptures and crustal dislocations. All of these important scientific applications fundamentally depend on a truly global reference system that only space geodesy can realize.

IAG Commission 1 activities are to deal with theoretical aspects of reference systems and the practical applications for their realizations as well as applied researches. The main objectives of Commission 1 are:

- Definition, establishment, maintenance and improvement of the geodetic reference frames
- Advanced terrestrial and space observation technique development for the above purposes
- International collaboration for the definition and deployment of networks of terrestrially based space geodetic observatories
- Theory and coordination of astrometric observation for reference frame purposes
- Collaboration with space geodesy/reference frame–related international services, agencies and organizations
- Promoting the definition and establishment of vertical reference systems at the global level, considering the advances in the regional sub-commissions

In order to review the progress in the above objectives, the Commission had organized the IAG Symposium “Reference Frames for Applications in Geosciences (REFAG2010)”, held in Marne la Vallée, France, during October 4–8, 2010, at the premises of Ecole Nationale des Sciences Géographiques & Université de Marne Lavallée. The primary scope of REFAG2010 was to address today’s achievements on theoretical concepts of reference systems and their practical implementations by individual space geodetic techniques and their combinations, underlying limiting factors, systematic errors and novel approaches for future improvements. Additionally, reference frame requirements, usage and applications in geosciences were also addressed during the Symposium. The program of the Symposium was divided into six sessions:

1. Theory and realization of global terrestrial reference systems
2. Strengths, weaknesses, modelling standards and processing strategies of space geodetic techniques
3. Definition, establishment, maintenance and integration of regional reference frames
4. Interaction between the celestial and the terrestrial reference frames
5. Definition and establishment of vertical reference systems
6. Usage and applications of reference frames in Geosciences
The Scientific organizing Committee consisted of:

- Zuheir Altamimi (IAG Commission 1 President)
- Mike Craymer (IAG Commission 1 Vice President)
- Markus Rothacher (President SC1.1)
- Claude Boucher (President SC1.2)
- João Torres (President SC1.3)
- Harald Schuh (President SC1.4)

and the local organizing committee consisted of:

- Xavier Collilieux
- David Coulot
- Laurent Métivier
- Christiane Guérin

who are members of the Geodetic Research Laboratory (LAREG) of the Institut National de l’Information Géographique et Forestière (IGN), France.

More than 150 scientists from 31 countries attended the Symposium. There were 43 oral and 25 poster presentations during the 5 days of the Symposium. More information is available at the REFAG2010 Symposium web site: http://iag.ign.fr/index.php?id=138. Forty papers were peer-reviewed and published in these proceedings, summarizing the main outcome of the Symposium.

The Symposium and the review process would not have been possible without the contribution of the following colleagues who acted as session conveners and associated editors, in alphabetic order: Claude Boucher, David Coulot, Mike Craymer, Richard Gross, Johanness Ihde, Frank Lemoine, Markus Rothacher, Harald Schuh, Michael Sideris, Peter Steigenberger and João Torres. I am also very grateful to all the reviewers listed in the front matter of these Proceedings for their concise reviews of the REFAG papers. My deep gratitude goes to my IGN colleagues who organized the logistics of the Symposium, and in particular to my co-editor, Xavier Collilieux, who created, managed and operated not only the Symposium website, but also the website of the Commission during its 4-year term (2007–2011).

Zuheir Altamimi
President, IAG Commission 1 (2007–2011)
List of Reviewers

Luisa Bastos
Matthias Becker
Etienne Bernard
Mario Berube
Johannes Böhm
Claude Boucher
Pierre Briole
Elmar Brockmann
Alessandro Caporali
Xavier Collilieux
Oscar Colombo
David Coulot
Michael Craymer
John Dawson
Athanasiou Dermanis
Galina Dick
John Dow
Miguel Dumett
Rémi Ferland
Steve Fisher
Mathias Fritsche
Daniel Gambis
Bruno Garayt
David Gordon
Mike Heflin
Manuel Hernandez-Pajares
Thomas A. Herring
Jianliang Huang
Urs Hugentobler
Robert Heinkelmann
Sharon Kedar
Ambrus Kenyeres
Kerry Kingham
Matt King
Johannes Ihde
Sébastien Lambert
Karine Le Bail
Frank Lemoine
Gunter Liebsch
Vincenza Luceri
Brian Luzum
Dan MacMillan
Zinovy Malkin
Jürgen Müller
Jay Parker
Hans-Peter Plag
Gerard Petit
Bill Petrachenko
Markku Poutanen
Elena Rangelova
Erricos Pavlis
Jim Ray
Paul Rebischung
John Ries
Manuel Ruiz-Perez
Martina Sacher
Laura Sanchez
Pierguido Sarti
Steffen Schoen
Florian Seitz
Michael G. Sideris
Michael Soffel
Drazen Svehla
Daniela Thaller
João Torres
Paul Tregoning
Marc Véronneau
Pascal Willis
Herbert Wilmes
Hartmut Wziontek
Contents

1 Geodetic Reference Frames: 40 Years of Technological Progress and of International Cooperation: 1970–2010 1
 C. Boucher

Part I Theory and Realization of Global Terrestrial Reference Systems

2 ITRF Combination: Theoretical and Practical Considerations and Lessons from ITRF2008 7
 Z. Altamimi, X. Collilieux, and L. Métivier

3 Distributed Processing for Large Geodetic Solutions 13
 H. Boomkamp

4 Geocenter Variations from Analysis of SLR Data 19

5 External Evaluation of the Origin and Scale of the International Terrestrial Reference Frame 27
 X. Collilieux and Z. Altamimi

6 GRGS Evaluation of ITRF2008, from SLR Data 33
 F. Deleflie, D. Coulot, B. de Saint-Jean, O. Laurain, and P. Exertier

7 Alternative Definitions of the Terrestrial Reference System and Its Realization in Reference Frames 39
 H. Drewes, D. Angermann, and M. Seitz

8 Evaluation of GNSS Monument Stability 45
 R. Haas, S. Bergstrand, and W. Lehner

9 Comparison of Realizations of the Terrestrial Reference Frame 51
 C. Ma, D. MacMillan, S. Bolotin, K. Le Bail, D. Gordon, and J. Gipson

10 The 2010 Reference Edition of the IERS Conventions 57
 G. Petit and B. Luzum

11 Dependence of IGS Products on the ITRF Datum 63
 J.R. Ray, P. Rebischung, and R. Schmid

12 Recent Results from the IGS Terrestrial Frame Combinations 69
 P. Rebischung and B. Garayt

13 Local Ties and Co-Location Sites: Some Considerations After the Release of ITRF2008 75
 P. Sarti, C. Abbondanza, and Z. Altamimi
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Small Trends and Oscillations in the 25 Year ILRS Translations and Scale Time Series</td>
<td>C. Sciarretta, V. Luceri, and G. Bianco</td>
<td>81</td>
</tr>
<tr>
<td>15</td>
<td>Accuracy Assessment of the ITRS 2008 Realization of DGFI: DTRF2008</td>
<td>Manuela Seitz, Detlef Angermann, and Hermann Drewes</td>
<td>87</td>
</tr>
<tr>
<td>16</td>
<td>Monitoring Site Stability at the Space Geodesy Facility, Herstmonceux, UK</td>
<td>M. Wilkinson, G. Appleby, R. Sherwood, and V. Smith</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>Part II Strengths, Weaknesses, Modelling Standards and Processing Strategies of Space Geodetic Techniques</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>A Priori Gradients in the Analysis of Space Geodetic Observations</td>
<td>J. Böhm, L. Urquhart, P. Steigenberger, R. Heinkelmann, V. Nafisi, and H. Schuh</td>
<td>105</td>
</tr>
<tr>
<td>18</td>
<td>Why Combining at the Observation Level?</td>
<td>D. Gambis, J.Y. Richard, R. Biancale, and C. Bizouard</td>
<td>111</td>
</tr>
<tr>
<td>19</td>
<td>Time-Correlated GPS Noise Dependency on Data Time Period</td>
<td>Alvaro Santamaría-Gómez, Marie-Noélle Bouin, Xavier Collilieux, and Guy Wöppelmann</td>
<td>119</td>
</tr>
<tr>
<td>20</td>
<td>GPS-Specific Local Effects at the Geodetic Observatory Wettzell</td>
<td>P. Steigenberger, U. Hugentobler, R. Schmid, U. Hessels, T. Klügel, and M. Seitz</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>Part III Definition, Establishment, Maintenance and Integration of Regional Reference Frames</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>The First Insight into Station Velocities in Republic of Serbia</td>
<td>D. Blagojević and V. Vasilic</td>
<td>133</td>
</tr>
<tr>
<td>23</td>
<td>Local Ties at Fundamental Stations</td>
<td>Ulla Kallio and Markku Poutanen</td>
<td>147</td>
</tr>
<tr>
<td></td>
<td>Part IV Interaction Between the Celestial and the Terrestrial Reference Frames</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>The Impact of the New IAU Resolutions on ICRF Definition and Realization</td>
<td>N. Capitaine</td>
<td>165</td>
</tr>
<tr>
<td>26</td>
<td>Effects of ICRF2 on the TRF, CRF, and EOP</td>
<td>David Gordon, Chopo Ma, Dan MacMillan, Sergei Bolotin, Karine Le Bail, and John Gipson</td>
<td>175</td>
</tr>
</tbody>
</table>
27 Systematic Inconsistencies Between VLBI CRF and TRF Solutions
Caused by Different Analysis Options .. 181
R. Heinkelmann and V. Tesmer

28 The Celestial Reference Frame at X/Ka-band (8.4/32 GHz) 191
C.S. Jacobs, J.E. Clark, C. García-Miró, M.B. Heflin, S. Horiuchi, V.E. Moll,
L.J. Skjerve, and O.J. Sovers

29 Systematic Errors of a VLBI Determined TRF Investigated
by Simulations .. 197

Part V Definition and Establishment of Vertical Reference Systems

30 Influence of Vertical Datum Inconsistencies on Gravity Field Modelling 205
Z. Fašková, R. Cunderlík, K. Mikula, and R. Tenzer

31 The Role of a Conventional Transformation Scheme for Vertical
Reference Frames ... 215
C. Kotsakis

32 Comparison of Latest Global and Regional Gravimetric Geoid Models
with GPS/Leveling Geoidal Undulations Over Japan 221
Y. Kuroishi

33 Creation of Vertical Reference Surfaces at Sea Using Altimetry
and GPS .. 229
L. Pineau-Guillou and L. Dorst

34 Combined Adjustment of GRACE and Geodetic Observations of Vertical
Crustal Motion in the Great Lakes Region 237
E. Rangelova and M.G. Sideris

35 Some Features of TOPEX/POSEIDON Data Application in Gravimetry 245
O. Yu. Vinogradova and E.A. Spiridonov

36 Towards the Unification of the Vertical Datum Over the North American
Continental .. 253
D.A. Smith, M. Véronneau, D.R. Roman, J. Huang, Y.M. Wang,
and M.G. Sideris

Part VI Usage and Applications of Reference Frames in Geosciences

37 Improving SIRGAS Ionospheric Model 261
C. Brunini, F. Azpilicueta, M. Gende, E. Camilion, and E. Gularte

38 Use of Reference Frames for Interplanetary Navigation at JPL 267
Michael Heflin, Chris Jacobs, Ojars Sovers, Angelyn Moore, and Sue Owen

39 Using Modified Allan Variance for Time Series Analysis 271
Z. Malkin

40 The Role of the TRS in Precision Agriculture: DGPS with EGNOS
and RTK Positioning Using Data from NTRIP Streams 277
I. Osório and M. Cunha

Author Index .. 283