OpenMP
in a Heterogeneous World

8th International Workshop on OpenMP, IWOMP 2012
Rome, Italy, June 11-13, 2012
Proceedings
Preface

OpenMP is a widely accepted, standard application programming interface (API) for high-level shared-memory parallel programming in Fortran, C, and C++. Since its introduction in 1997, OpenMP has gained support from most high-performance compiler and hardware vendors. Under the direction of the OpenMP Architecture Review Board (ARB), the OpenMP specification has evolved, reaching the recent release of Specification 3.1. Heterogeneous systems, where conventional CPUs are combined with one or more many-core accelerators, are raising new interest in directive-based approaches to parallel programming, like OpenMP. The appealing computing power offered by heterogeneous hardware makes the old problem of software portability even more complicated. Code porting can no longer be restricted to making computing intensive routines suitable for a given architecture. Since architectural diversity is now built into heterogeneous systems themselves, to fully exploit their computing power, one single application may need to contain two or more versions of the same code section, suited for different subsystems. This year, the IWOMP conference took its title from the important role that OpenMP can play in helping programmers to generalize the design of their codes, so that it can be mapped onto accelerators or conventional CPUs, leaving the low-level parallelization work to the compiler.

The community of OpenMP researchers and developers in academia and industry is united under cOMPunity (www.compunity.org). This organization has held workshops on OpenMP around the world since 1999: the European Workshop on OpenMP (EWOMP), the North American Workshop on OpenMP Applications and Tools (WOMPAT), and the Asian Workshop on OpenMP Experiences and Implementation (WOMPEI) attracted annual audiences from academia and industry. The International Workshop on OpenMP (IWOMP) consolidated these three workshop series into a single annual international event that rotates across the previous workshop sites. The first IWOMP meeting was held in 2005, in Eugene, Oregon, USA. Since then, meetings have been held each year, in Reims, France, Beijing, China, West Lafayette, USA, Dresden, Germany, Tsukuba, Japan, and Chicago, USA. Each workshop has drawn participants from research and industry throughout the world. IWOMP 2012 continued the series with technical papers, tutorials, and OpenMP status reports. Furthermore, to stress the importance of the research activities in the field of compilers, runtime systems, and tools as a driving force for the OpenMP evolution, IWOMP traditionally hosts one of the meetings of the language committee. The first IWOMP workshop was organized under the auspices of cOMPunity, and thereafter, the IWOMP Steering Committee took care of organizing and expanding this series of events. The success of the IWOMP meetings is mostly due to the generous support from numerous sponsors.
The cOMPunity website (www.compunity.org) provides access to all presentations proposed during the meetings and to a photo gallery of the events. Information about the latest conference can be found on the IWOMP website at www.iwomp.org. This book contains the proceedings of the 8th International Workshop on OpenMP which was held in Rome in June 2012, where 18 technical papers and 7 posters were presented out of more than 30 works submitted to the call for papers. The workshop program also included a tutorial day and the keynote talk of Bjarne Stroustrup, the creator and developer of the C++ programming language.

The interest shown this year again in the IWOMP conference witnesses the strength, the maturity, and the diffusion of the portable, scalable model defined by OpenMP, and confirms the critical role played by this series of events in the development of the specification and its adoption.

June 2012

Barbara M. Chapman
Federico Massaioli
Matthias S. Müller
Marco Rorro
Organization

Program and Organizing Chair
Federico Massaioli CASPUR, Italy

Sponsor Contact Chair
Barbara M. Chapman University of Houston, USA

Tutorial Chair
Ruud van der Pas Oracle America, USA

Poster Co-chairs
Alejandro Duran BSC, Spain
Christian Terboven RWTH Aachen University, Germany

Program Committee
Dieter an Mey RWTH Aachen University, Germany
Eduard Ayguadé BSC/UPC, Spain
Massimo Bernaschi IAC-CNR, Italy
James Beyer Cray Inc., USA
Mark Bull EPCC, UK
Bronis R. de Supinski NNSA ASC, LLNL, USA
Alejandro Duran BSC, Spain
Rudolf Eigenmann Purdue University, USA
Massimiliano Fatica NVIDIA, USA
Guang R. Gao University of Delaware, USA
William Gropp University of Illinois, USA
Lei Huang Prairie View A&M University, USA
Ricky Kendall Oak Ridge National Laboratory, USA
Raymond Loy Argonne National Laboratory, USA
Craig Lucas NAG Ltd, UK
Larry Meadows Intel, USA
Matthias S. Müller ZIH, TU Dresden, Germany
Stephen Olivier University of North Carolina, USA
Marco Rorro CASPUR, Italy
VIII Organization

Mitsuhisa Sato University of Tsukuba, Japan
Eric Stahlberg OpenFPGA and Wittenberg University, USA
Christian Terboven RWTH Aachen University, Germany
Ruud van der Pas Oracle America, USA
Michael Wong IBM, Canada

Steering Committee Chair

Matthias S. Müller ZIH, TU Dresden, Germany

Steering Committee

Dieter an Mey RWTH Aachen University, Germany
Eduard Ayguadé BSC/UPC, Spain
Mark Bull EPCC, UK
Barbara M. Chapman University of Houston, USA
Rudolf Eigenmann Purdue University, USA
Guang R. Gao University of Delaware, USA
William Gropp University of Illinois, USA
Ricky Kendall Oak Ridge National Laboratory, USA
Michael Krajecki University of Reims, France
Rick Kufrin NCSA/University of Illinois, USA
Kalyan Kumaran Argonne National Laboratory, USA
Federico Massaioli CASPUR, Italy
Larry Meadows Intel, USA
Arnaud Renard University of Reims, France
Mitsuhisa Sato University of Tsukuba, Japan
Sanjiv Shah Intel
Bronis R. de Supinski NNSA ASC, LLNL, USA
Ruud van der Pas Oracle America, USA
Matthijs van Waveren Fujitsu, France
Michael Wong IBM, Canada
Weimin Zheng Tsinghua University, China

Additional Reviewers

Gary Elsesser
Jeffrey Sandoval
Francesco Salvadore
Eighth International Workshop on OpenMP
IWOMP 2012

Proposed Extensions to OpenMP

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specification and Performance Evaluation of Parallel I/O Interfaces for OpenMP</td>
<td>1</td>
</tr>
<tr>
<td>Kshitij Mehta, Edgar Gabriel, and Barbara Chapman</td>
<td></td>
</tr>
<tr>
<td>The Design of OpenMP Thread Affinity</td>
<td>15</td>
</tr>
<tr>
<td>Alexandre E. Eichenberger, Christian Terboven, Michael Wong, and Dieter an Mey</td>
<td></td>
</tr>
<tr>
<td>Auto-scoping for OpenMP Tasks</td>
<td>29</td>
</tr>
<tr>
<td>Sara Royuela, Alejandro Duran, Chunhua Liao, and Daniel J. Quinlan</td>
<td></td>
</tr>
<tr>
<td>A Case for Including Transactions in OpenMP II: Hardware Transactional Memory</td>
<td>44</td>
</tr>
<tr>
<td>Barna L. Bihari, Michael Wong, Amy Wang, Bronis R. de Supinski, and Wang Chen</td>
<td></td>
</tr>
<tr>
<td>Extending OpenMP* with Vector Constructs for Modern Multicore SIMD Architectures</td>
<td>59</td>
</tr>
<tr>
<td>Michael Klemm, Alejandro Duran, Xinmin Tian, Hideki Saito, Diego Caballero, and Xavier Martorell</td>
<td></td>
</tr>
<tr>
<td>Introducing Task Cancellation to OpenMP</td>
<td>73</td>
</tr>
<tr>
<td>Oussama Tahan, Mats Brorsson, and Mohamed Shawky</td>
<td></td>
</tr>
</tbody>
</table>

Runtime Environments

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic OpenMP Loop Scheduling: A Combined Compiler and Runtime Approach</td>
<td>88</td>
</tr>
<tr>
<td>Peter Thoman, Herbert Jordan, Simone Pellegrini, and Thomas Fahringer</td>
<td></td>
</tr>
<tr>
<td>LIBKOMP, an Efficient OpenMP Runtime System for Both Fork-Join and Data Flow Paradigms</td>
<td>102</td>
</tr>
<tr>
<td>François Broquedis, Thierry Gautier, and Vincent Danjean</td>
<td></td>
</tr>
</tbody>
</table>
A Compiler-Assisted Runtime-Prefetching Scheme for Heterogeneous Platforms ... 116
Li Chen, Baojiang Shou, Xionghui Hou, and Lei Huang

Optimization and Accelerators

Experiments with WRF on Intel® Many Integrated Core (Intel MIC) Architecture ... 130
Larry Meadows

Optimizing the Advanced Accelerator Simulation Framework Synergia Using OpenMP ... 140
Hongzhang Shan, Erich Strohmaier, James Amundson, and Eric G. Stern

Using Compiler Directives for Accelerating CFD Applications on GPUs .. 154
Haoqiang Jin, Mark Kellogg, and Piyush Mehrotra

Effects of Compiler Optimizations in OpenMP to CUDA Translation .. 169
Amit Sabne, Putt Sakdhnagool, and Rudolf Eigenmann

Task Parallelism

Assessing OpenMP Tasking Implementations on NUMA Architectures .. 182
Christian Terboven, Dirk Schmidl, Tim Cramer, and Dieter an Mey

Performance Analysis Techniques for Task-Based OpenMP Applications .. 196
Dirk Schmidl, Peter Philippen, Daniel Lorenz, Christian Rössel, Markus Geimer, Dieter an Mey, Bernd Mohr, and Felix Wolf

Task-Based Execution of Nested OpenMP Loops .. 210
Spiros N. Agathos, Panagiotis E. Hadjidoukas, and Vassilios V. Dimakopoulos

Validation and Benchmarks

SPEC OMP2012 – An Application Benchmark Suite for Parallel Systems Using OpenMP .. 223
Matthias S. Müller, John Baron, William C. Brantley, Huiyu Feng, Daniel Hackenberg, Robert Henschel, Gabriele Jost, Daniel Molka, Chris Parrott, Joe Robichaux, Pavel Shelupugin, Matthijs van Waveren, Brian Whitney, and Kalyan Kumaran
Table of Contents

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>An OpenMP 3.1 Validation Testsuite</td>
<td>237</td>
</tr>
<tr>
<td>Cheng Wang, Sunita Chandrasekaran, and Barbara Chapman</td>
<td></td>
</tr>
<tr>
<td>Poster Papers</td>
<td></td>
</tr>
<tr>
<td>Performance Analysis of an Hybrid MPI/OpenMP ALM Software for Life</td>
<td>250</td>
</tr>
<tr>
<td>Insurance Policies on Multi-core Architectures</td>
<td></td>
</tr>
<tr>
<td>Francesca Perla and Paolo Zanetti</td>
<td></td>
</tr>
<tr>
<td>Adaptive OpenMP for Large NUMA Nodes</td>
<td>254</td>
</tr>
<tr>
<td>Aurèle Mahéo, Souad Koliaï, Patrick Carribault, Marc Pérache, and</td>
<td></td>
</tr>
<tr>
<td>William Jalby</td>
<td></td>
</tr>
<tr>
<td>A Generalized Directive-Based Approach for Accelerating PDE Solvers</td>
<td>258</td>
</tr>
<tr>
<td>Francesco Salvadore</td>
<td></td>
</tr>
<tr>
<td>Design of a Shared-Memory Model for CAPE</td>
<td>262</td>
</tr>
<tr>
<td>Viet Hai Ha and Éric Renault</td>
<td></td>
</tr>
<tr>
<td>Overlapping Computations with Communications and I/O Explicitly</td>
<td>267</td>
</tr>
<tr>
<td>Using OpenMP Based Heterogeneous Threading Models</td>
<td></td>
</tr>
<tr>
<td>Sadaf R. Alam, Gilles Fourestey, Brice Videau, Luigi Genovese,</td>
<td></td>
</tr>
<tr>
<td>Stefan Goedecker, and Nazim Dugan</td>
<td></td>
</tr>
<tr>
<td>A Microbenchmark Suite for OpenMP Tasks</td>
<td>271</td>
</tr>
<tr>
<td>J. Mark Bull, Fiona Reid, and Nicola McDonnell</td>
<td></td>
</tr>
<tr>
<td>Support for Thread-Level Speculation into OpenMP</td>
<td>275</td>
</tr>
<tr>
<td>Sergio Aldea, Diego R. Llanos, and Arturo González-Escribano</td>
<td></td>
</tr>
<tr>
<td>Author Index</td>
<td>279</td>
</tr>
</tbody>
</table>