Total Hip Arthroplasty
Total Hip Arthroplasty

Wear Behaviour of Different Articulations
There are four important criteria essential for a successful implant to achieve long-term stability and function: material, design, fixation of the prosthesis and wear of the articulation. Stability is achieved by fixation with bone cement or cementless press-fit using different designs of stems and cups. There are hundreds of implants on the market, all of them offering excellent results when used.

In contrast to the numerous implant designs, there are only three materials available to support the demands of long-term function: polyethylene, metal and ceramics. Wear of these articulating materials is one of the most important factors for successful long-term results in total hip arthroplasty.

In the early days of total hip arthroplasty, a metal head articulating with a conventional polyethylene cup was the gold standard. Unfortunately in many cases wear debris after long-term function resulted in osteolysis around the implant with subsequent loosening. Consequently, new materials and new options of combinations between cup and stem were introduced. Hard-on-hard bearings (metal-on-metal, ceramic-on-ceramic) became more and more popular, but their popularity was compromised by allergic reaction of metal, pseudotumours, fracture or squeaking of the articulating material. Consequently implant companies focused on development activities to overcome the shortcomings of their products. Conventional polyethylene was improved by high cross-linking techniques and furthermore by adding vitamin K. Pure aluminium oxide ceramic was improved by introducing ceramic composite implants.

The Tribology Day at the 12th EFORT Congress in Copenhagen focused on all these new products and their effectiveness in clinical use. Polyethylene topics cover the analysis of influence of vitamin E-blended cross-linked polyethylene in in vitro wear testing as well as in long-term clinical use. Metal-on-metal articulations are recently faced with loss of reputation due to allergic reactions and pseudotumours, especially in large-diameter head implants. Retrieval analyses and clinical survival papers address these issues. Fracture and squeaking are the main concerns with ceramic-on-ceramic articulations. Their frequency and clinical relevance are discussed and long-term results presented.

The authors of this book contributions hope that their chapters will meet your expectations and give a better insight to a still on-going improvement of wear reduction in total hip arthroplasty.

K. Knahr
Contents

Part I Introduction

1 Tribology of Hip Prostheses, Wear Performance and Reliability, Effect of Materials and Head Size ... 3
 John Fisher

2 How to Treat Failures Related to Articulation ... 9
 Luigi Zagra, Luca Bianchi, and Roberto Giacometti Ceroni

Part II Polyethylene Articulations

3 Oxidation Prevention with Vitamin E in a HXLPE Isoelastic Monoblock Pressfit Cup: Preliminary Results ... 21
 Martin Beck, Daniel Delfosse, Reto Lerf, Roland Becker, Gary French,
 Lutz Hollmann, Karl Knahr, Helmy Naeder, Eric Meijer,
 Philipp Rehbein, Joseph Baines, Vincent Steenmeijer, and Arthur de Gast

4 In Vitro Wear Testing of Conventional Versus Sequentially Cross-Linked Polyethylene Liners in Combination with Different Sizes of Ceramic Femoral Heads ... 33
 Carmen Zietz, Andreas Fritsche, Lars Middelborg, Wolfram Mittelmeier,
 and Rainer Bader

5 Characterisation of Vitamin E–Blended UHMWPE for Higher In Vivo Performance in Orthopaedic Arthroplasty ... 41
 Luigi Costa, Marco Regis, Pierangiola Bracco, Luca Giorgini,
 and Simonetta Fusi

6 Long-Term Reduction of Wear and Osteolysis with Cross-Linked PE? 13-Year Follow-up of a Prospectively Randomized Comparison with Conventional PE ... 59
 Bernd Grimm, Alphons Tonino, and Ide Christiaan Heyligers
Part III Metal Articulations

7 Metal-on-Metal Bearings in Hip Surgery: The London Implant Retrieval Centre Experience .. 73
John Skinner, Alister Hart, and Ashley Matthies

8 Total Hip Arthroplasty with a Large-Diameter Metal-on-Metal Cup (Durom) and a Standard Stem: Short-Term Results 91
Panayiotis Christofilopoulos, Anne Lübbeke, Charles Berton, Alexandre Lädermann, Martin Berli, Constantinos Roussos, Alexis Bonvin, Robin Peter, and Pierre Hoffmeyer

9 Polyethylene Wear in Metal-Backed Cups: A Retrospective Analysis of 200 Uncemented Prostheses ... 99
Walter van der Weegen, Shennah Austen, Thea Sijbesma, and Henk J. Hoekstra

10 Immunological Adverse Reaction Associated with Low Carbide Content Metal-on-Metal Bearings in a Contemporary Cementless Total Hip Arthroplasty .. 113
Panagiotis Korovessis, Thomas Repantis, Panagiotis Aroukatos, and Maria Repanti

Part IV Ceramic Articulations

11 Fracture and Squeaking in Ceramic-on-Ceramic Bearings: Is It Really a Concern? ... 127
Alexandra Pokorny and Karl Knahr

12 Long-Term Stability of Ceramic Composite in Total Hip Arthroplasty 145
Bernard Masson and Meinhard Kuntz

13 Ceramic-on-Ceramic Bearings in Hip Arthroplasty: A Clinical Review ... 155
James M. Buchanan

Part V Miscellaneous

14 Study of a Titanium Dual-Mobility Socket with a Mean Follow-up of 18 Years... 161
Remy Philippot, B. Boyer, and F. Farizon

15 ECiMa™ for Low Wear, Optimal Mechanical Properties and Oxidation Resistance of Hip Bearings ... 169
Alison Traynor, David Simpson, and Simon Collins

Index .. 183