Preface

Muscarinic acetylcholine receptors have played a key role in the advancement of knowledge of pharmacology and neurotransmission since the inception of studies in these fields. Indeed, the classical work of Loewi, which led to the identification of acetylcholine as the Vagusstoff released by nerve stimulation, thus showing that synaptic transmission was chemical and not electrical, was based on the actions of neurotransmitter at muscarinic receptors. The physiological actions mediated by muscarinic receptors were known and exploited for both therapeutic and nontherapeutic purposes for hundreds of years before the existence of the receptors themselves was recognized. It is remarkable that the study of muscarinic receptors continues to provide new and surprising insights not just to the cholinergic system, but to the broad areas of neurobiology, cell biology, pharmacology, and therapeutics.

Like other members of the G-protein-coupled receptor superfamily, the application of molecular biological approaches to the study of the muscarinic receptors provided dramatically increased knowledge of both their biological complexity and therapeutic potential. The identification in the late 1980s of multiple genes encoding distinct muscarinic receptor subtypes provided the opportunity to develop drugs that would target discrete subsets of muscarinic receptors with decreased global side effects. The more recent demonstration that drugs can act both positively and negatively on the receptors at sites distinct from the acetylcholine binding region has provided even further promise for increasing the therapeutic specificity of muscarinic drugs.

We hope that this volume will provide a broad yet detailed review of current knowledge of muscarinic receptors that will be valuable both to long-time muscarinic investigators and to those new to the field. It describes the detailed insights that have been obtained on the structure, function, and cell biology of muscarinic receptors. This volume also describes physiological analyses of muscarinic receptors and their roles in regulating the function of the brain and of a variety of peripheral tissues. Finally, it demonstrates how the increased knowledge of the
basic biology, pharmacology, and physiology of the muscarinic receptors can be
translated into improved therapeutic applications.

We also hope that this book highlights both the excitement of the study of
muscarinic receptors and the amazing range of advances that have occurred in
recent years. We are sure that the future will continue to yield information on facets
of the muscarinic receptors that we have not yet imagined.

Portland, OR, USA Allison D. Fryer
Parkville, VIC, Australia Arthur Christopoulos
Seattle, WA, USA Neil M. Nathanson
Contents

Part I Muscarinic Receptor Pharmacology and Signaling

Overview of Muscarinic Receptor Subtypes .. 3
Richard M. Eglen

Structure–Function Studies of Muscarinic Acetylcholine
Receptors ... 29
Katie Leach, John Simms, Patrick M. Sexton, and Arthur Christopoulos

Polymorphisms in Human Muscarinic Receptor Subtype Genes 49
Martin C. Michel and Christine A. Teitsma

Muscarinic Receptor Trafficking .. 61
Cindy Reiner and Neil M. Nathanson

Physiological Role of G-Protein Coupled Receptor
Phosphorylation ... 79
Adrian J. Butcher, Kok Choi Kong, Rudi Prihandoko, and Andrew B. Tobin

Novel Muscarinic Receptor Mutant Mouse Models 95
Jürgen Wess

Part II Muscarinic Receptors in the CNS

Muscarinic Receptor Pharmacology and Circuitry for the
Modulation of Cognition .. 121
Michael Bubser, Nellie Byun, Michael R. Wood, and Carrie K. Jones
Muscarinic Agonists and Antagonists in Schizophrenia 167
Amanda R. Bolbecker and Anantha Shekhar

Muscarinic Pain Pharmacology: Realizing the Promise of Novel Analgesics by Overcoming Old Challenges 191
Dennis F. Fiorino and Miguel Garcia-Guzman

Muscarinic Modulation of Striatal Function and Circuitry 223
Joshua A. Goldberg, Jun B. Ding, and D. James Surmeier

Muscarinic Receptors in Brain Stem and Mesopontine Cholinergic Arousal Functions ... 243
John S. Yeomans

Part III Muscarinic Receptors in Autonomic Effector Organs

Muscarinic Receptor Agonists and Antagonists: Effects on Ocular Function ... 263
Frederick Mitchelson

Muscarinic Receptor Agonists and Antagonists: Effects on Cardiovascular Function ... 299
Robert D. Harvey

Muscarinic Receptor Antagonists: Effects on Pulmonary Function ... 317
Kalmia S. Buels and Allison D. Fryer

Muscarinic Agonists and Antagonists: Effects on Gastrointestinal Function ... 343
Frederick J. Ehlert, Kirk J. Pak, and Michael T. Griffin

Muscarinic Agonists and Antagonists: Effects on the Urinary Bladder ... 375
Donna J. Sellers and Russ Chess-Williams

Part IV Muscarinic Receptors and Mediation of Hormonal Effects of Acetylcholine

Muscarinic Receptor Agonists and Antagonists: Effects on Inflammation and Immunity ... 403
Norah G. Verbout and David B. Jacoby
Contents

Muscarinic Receptor Agonists and Antagonists: Effects on Keratinocyte Functions .. 429
Sergei A. Grando

Muscarinic Receptor Agonists and Antagonists: Effects on Cancer ... 451
Eliot R. Spindel

Activation of Muscarinic Receptors by Non-neuronal Acetylcholine ... 469
Ignaz Karl Wessler and Charles James Kirkpatrick

Index ... 493
Contributors

Amanda R. Bolbecker Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA

Michael Bubser Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN, USA

Kalmia S. Buels Oregon Health and Science University, Portland, OR, USA

Adrian J. Butcher Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, UK

Nellie Byun Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN, USA

Russ Chess-Williams Bond University, Robina, QLD, Australia

Arthur Christopoulos Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia

Jun B. Ding Department of Neurobiology, Harvard Medical School, Boston, MA, USA

Richard M. Eglen Corning Life Sciences, 900 Chelmsford St., MA, Lowell

Frederick J. Ehlert Department of Pharmacology, School of Medicine, University of California, Irvine, CA, USA

Dennis F. Fiorino Vertex Pharmaceuticals Inc., San Diego, CA, USA

Allison D. Fryer Oregon Health and Science University, Portland, OR, USA
Miguel Garcia-Guzman Aspyrian Therapeutics Inc., San Diego, CA, USA

Joshua A. Goldberg Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA

Sergei A. Grando Departments of Dermatology and Biological Chemistry, University of California, Irvine, CA, USA

Michael T. Griffin Department of Pharmacology, School of Medicine, University of California, Irvine, CA, USA

Robert D. Harvey Department of Pharmacology, University of Nevada School of Medicine, Reno, NV, USA

David B. Jacoby Oregon Health and Science University, Portland, OR, USA

Carrie K. Jones Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN, USA

Charles James Kirkpatrick Institut für Pathologie, Universitätsmedizin Mainz, Johannes-Gutenberg Universität Mainz, Mainz, Germany

Kok Choi Kong Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, UK

Katie Leach Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia

Martin C. Michel Departments of Pharmacology and Pharmacotherapy, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Boehringer Ingelheim Pharma GmbH & Co. KG, Clinical Development and Medical Affairs, Ingelheim Germany

Frederick Mitchelson Department of Pharmacology, University of Melbourne, Melbourne, VIC, Australia

Neil M. Nathanson Department of Pharmacology, University of Washington, Seattle, WA, USA

Kirk J. Pak Department of Pharmacology, School of Medicine, University of California, Irvine, CA, USA

Cindy Reiner Department of Pharmacology, University of Washington, Seattle, WA, USA
Donna J. Sellers Bond University, Robina, QLD, Australia

Patrick M. Sexton Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia

Anantha Shekhar Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA

John Simms Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia

Eliot R. Spindel Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA

D. James Surmeier Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA

Christine A. Teitsma Departments of Pharmacology and Pharmacotherapy, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands

Andrew B. Tobin Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, UK

Norah G. Verbout School of Public Health, Harvard University, Boston, MA, USA

Jürgen Wess Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA

Ignaz Karl Wessler Institut für Pathologie, Universitätsmedizin Mainz, Johannes-Gutenberg Universität Mainz, Mainz, Germany

Michael R. Wood Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Department of Chemistry, Vanderbilt University, Nashville, TN, USA

John S. Yeomans Department of Psychology, University of Toronto, Toronto, ON, Canada