Robotic Sailing
Preface

IRSC 2011 is only the fourth in a series of conferences dedicated to robotic sailing, and while still comparatively small, we have seen a substantial increase in the number of groups interested in and working on robotic sailboats recently. Given that sailing is a fairly old way of locomotion and a high-tech sports today, it is somewhat surprising that the first competition for autonomous sailboats was proposed as late as 2004. Yet, the original objective to autonomously sail across the Atlantic ocean proved to be fairly ambitious, and no boat has succeeded so far.

However, this also highlights the complexity of the engineering challenges at hand. Sailing depends as much on the physical properties of boat and rig as on the course and route set in the context of changing winds and currents. Moreover, performance measures do not only include the boat speed, but also seaworthiness and robustness of the whole system. Hence, building a robotic sailboat is a true interdisciplinary project, involving naval architecture and physics, electrical engineering and power management, embedded systems, computer science, and systems engineering.

Establishing a conference held jointly with the World Robotic Sailing Championship (WRSC) has provided a platform for discussions among scientists from all fields involved in robotic sailing. In fact, we believe that the progress made in autonomous sailing so far is to no small extent driven by this combination of competition and knowledge exchange. The interdisciplinary nature of robotics and robotic sailing is reflected in the papers contributed to IRSC and the teams participating in WRSC. Further promoting this multidisciplinary approach will be key to tackling the numerous challenges on the way to truly autonomous sailboats.

These proceedings summarize the state of the art in robotic sailing, and the introduction in Part I contains a review illustrating its history and recent advances. Clearly, having a robust and reliable boat is a key requirement, which is also the focus of papers in Part II. The proposed designs range from small one-design boats for algorithm development to vessels built to cross the Atlantic Ocean. Different aspects of the system design and validation are discussed in Part III. The remaining papers focus on algorithmic matters: Part IV presents approaches for collision avoidance while Part V addresses localization and route planning.
Organizing IRSC 2011 was only possible with the help of many people. We are grateful to all of them, particularly to Petra Roßkopf for her assistance with the conference location, and to our student co-organizers, who have worked tirelessly to get everything arranged. We also thank our sponsors and partners without whom this conference would have been infeasible. Alexander Schlaefer is very appreciative for the patience and tolerance of Achim Schweikard, who supported the idea to organize IRSC/WRSC in Lübeck. Ole Blaurock would like to express his appreciation to the robotic sailing team at the Fachhochschule Lübeck, which started only in the beginning of the year and yet managed to activate numerous colleagues, enabling the participation in WRSC 2011.

Lübeck,
August 2011

Alexander Schlaefer
Ole Blaurock
Organization

General Chair
Alexander Schlaefer
University of Lübeck, Germany

Co-Chair
Uwe Krohn
University of Applied Sciences, Lübeck, Germany

Proceedings
Alexander Schlaefer
University of Lübeck, Germany
Ole Blaurock
University of Applied Sciences, Lübeck, Germany

Secretariat
Cornelia Rieckhoff
University of Lübeck, Germany

Student Co-Organizers
Niko Ammann
University of Lübeck, Germany
Lenka Hanesová
University of Applied Sciences, Lübeck, Germany
Florian Hartmann
University of Lübeck, Germany
Philipp Jauer
University of Lübeck, Germany
Julia Krüger
University of Lübeck, Germany
Tobias Meyer
University of Lübeck, Germany

Program Committee
José C. Alves
Universidade do Porto, Portugal
Ralf Bruder
University of Lübeck, Germany
Nuno A. Cruz
Universidade do Porto, Portugal
Erik Maehle
University of Lübeck, Germany
Benedita Malheiro
ISEP - IPP, Portugal
Paul Miller
USNA, United States of America
Mark J. Neal
University of Aberystwyth, United Kingdom
Cedric Pradalier
ETH Zürich, Switzerland
Colin Sauze
University of Aberystwyth, United Kingdom
Roland Stelzer
INNOC, Austria
Contents

Part I: Introduction

History and Recent Developments in Robotic Sailing 3
Roland Stelzer, Karim Jafarmadar

Part II: Robotic Sailboats

Sailing without Wind Sensor and Other Hardware and Software Innovations ... 27
Jan Sliwka, Jeremy Nicola, Remi Coquelin, Francois Becket de Megille,
Benoit Clement, Luc Jaulin

MOOP: A Miniature Sailing Robot Platform 39
Colin Sauze, Mark Neal

Breizh Spirit, a Reliable Boat for Crossing the Atlantic Ocean 55
Richard Leloup, Frederic Le Pivert, Sebastien Thomas, Gabriel Bouvart,
Nicolas Douale, Henry De Malet, Laurent Vienney, Yvon Gallou,
Kostia Roncin

A New Class for Robotic Sailing: The Robotic Racing Micro Magic 71
Alexander Schlaefer, Daniel Beckmann, Maximilian Heinig, Ralf Bruder

Part III: System Development

A Systems Engineering Approach to the Development of an Autonomous Sailing Vessel ... 87
Bradley E. Bishop, Joseph Bradshaw, Cody Keef, Nicholas Taschner

Using ARM7 and uC/OS-II to Control an Autonomous Sailboat 101
Michael Koch, Wilhelm Petersen
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulating Sailing Robots</td>
<td>113</td>
</tr>
<tr>
<td>Colin Sauzé, Mark Neal</td>
<td></td>
</tr>
<tr>
<td>Part IV: Collision Avoidance</td>
<td></td>
</tr>
<tr>
<td>Oren Gal</td>
<td></td>
</tr>
<tr>
<td>Rule-Compliant Navigation with Qualitative Spatial Reasoning</td>
<td>141</td>
</tr>
<tr>
<td>Diedrich Wolter, Frank Dylla, Arne Kreutzmann</td>
<td></td>
</tr>
<tr>
<td>Global Data Storage for Collision Avoidance in Robotic Sailboat</td>
<td>157</td>
</tr>
<tr>
<td>Racing – The World Server Approach</td>
<td></td>
</tr>
<tr>
<td>Nikolaus Ammann, Florian Hartmann, Philipp Jauer, Julia Krüger,</td>
<td></td>
</tr>
<tr>
<td>Tobias Meyer, Ralf Bruder, Alexander Schlaefer</td>
<td></td>
</tr>
<tr>
<td>Part V: Localization and Route Planning</td>
<td></td>
</tr>
<tr>
<td>A Digital Interface for Imagery and Control of a Navico/Lowrance</td>
<td>169</td>
</tr>
<tr>
<td>Broadband Radar</td>
<td></td>
</tr>
<tr>
<td>Adrian Dabrowski, Sebastian Busch, Roland Stelzer</td>
<td></td>
</tr>
<tr>
<td>Route Planning for a Micro-transat Voyage</td>
<td>183</td>
</tr>
<tr>
<td>Peter Gibbons-Neff, Paul Miller</td>
<td></td>
</tr>
<tr>
<td>A Rule-Based Approach to Long-Term Routing for Autonomous Sailboats</td>
<td>195</td>
</tr>
<tr>
<td>Johannes Langbein, Roland Stelzer, Thom Frühwirth</td>
<td></td>
</tr>
<tr>
<td>Author Index</td>
<td>205</td>
</tr>
</tbody>
</table>