A Series of Modern Surveys in Mathematics

Editorial Board
G.-M. Greuel, Kaiserslautern M. Gromov, Bures-sur-Yvette
J. Jost, Leipzig J. Kollár, Princeton
G. Laumon, Orsay H. W. Lenstra, Jr., Leiden
S. Müller, Bonn J. Tits, Paris
D. B. Zagier, Bonn G. Ziegler, Berlin

Managing Editor R. Remmert, Münster

For further volumes:
www.springer.com/series/728
This volume is the second part of a treatise on Spin Glasses in the series Ergebnisse der Mathematik und ihrer Grenzgebiete. The first part is Vol. 54 of the Ergebnisse series (ISBN 978-3-642-15201-6). The first edition of the treatise appeared as Vol. 46 of the same series (978-3-540-00356-4).

ISSN 0071-1136 Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics
DOI 10.1007/978-3-642-22253-5
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011936027

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Cover design: deblik

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)
To Giorgio Parisi, for the new territories he discovered.
Contents

Introduction .. XI

Part I. Advanced Replica-Symmetry

8. **The Gardner Formula for the Sphere** 3
 8.1 Introduction ... 3
 8.2 Gaussian Processes 4
 8.3 The Gardner Formula for the Gaussian Measure 13
 8.4 The Gardner Formula for the Sphere 24
 8.5 The Bernoulli Model 34

9. **The Gardner Formula for the Discrete Cube** 49
 9.1 Overview ... 49
 9.2 A Priori Estimates 52
 9.3 Gaussian Processes 58
 9.4 Integration by Parts 67
 9.5 The Replica Symmetric Solution 72
 9.6 The Gardner Formula for the Discrete Cube 83
 9.7 Higher Order Expansion and Central Limit Theorems ... 90
 9.8 An Approximation Procedure 109
 9.9 The Bernoulli Model 115

10. **The Hopfield Model** 123
 10.1 Introduction ... 123
 10.2 The Replica-Symmetric Equations 124
 10.3 Localization on Balls with Random Centers 126
 10.4 Controlling $m_k(\sigma)$, $k \geq 2$ 141
 10.5 The Smart Path 145
 10.6 Integration by Parts 157
 10.7 The Replica-Symmetric Solution 162
 10.8 Computing $p_{N,M}$ 174
 10.9 Higher Moments, the TAP Equations 179
 10.10 Central Limit Theorems 191
10.11 The p-Spin Hopfield Model 198
10.12 Proof of Theorem 10.2.1 216

11. The SK Model Without External Field 225
 11.1 Overview ... 225
 11.2 Lower Deviations for Z_N 226
 11.3 Upper Deviations for Z_N 233
 11.4 The Aizenman-Lebowitz-Ruelle Central Limit Theorem 239
 11.5 The Matrix of Spin Correlations 243
 11.6 The Model with d-Component Spins 253
 11.7 A Research Problem: The Transition at $\beta = 1$ 268

Part II. Low Temperature

12. The Ghirlanda-Guerra Identities 287
 12.1 The Identities ... 287
 12.2 The Extended Identities 296
 12.3 A Positivity Principle 298
 12.4 The Distribution of the Overlaps at Given Disorder 303
 12.5 Large Deviations .. 307

13. The High-Temperature Region of the SK Model 313
 13.1 The Poisson-Dirichlet Distribution and the REM 313
 13.2 The 1-RSB Bound for the SK Model 319
 13.3 Toninelli’s Theorem 323
 13.4 Overview of Proof 326
 13.5 A Bound for Coupled Copies 331
 13.6 The Main Estimate 335
 13.7 Exponential Inequalities 343

14. The Parisi Formula ... 349
 14.1 Introduction .. 349
 14.2 Poisson-Dirichlet Cascades 349
 14.3 Fundamental Identities 353
 14.4 Guerra’s Broken Replica-Symmetry Bound 362
 14.5 Method of Proof .. 371
 14.6 Bounds for Coupled Copies 381
 14.7 Operators .. 395
 14.8 Main Estimate: Methodology 415
 14.9 Main Estimate: The Critical Cases 419
 14.10 Main Estimate: Proof of Proposition 14.8.6 428
 14.11 Parisi Measures .. 439
 14.12 Positivity of the Overlap 448
 14.13 Notes and Comments 473
15. The Parisi Solution ... 475
15.1 Introduction .. 475
15.2 Ghirlanda-Guerra Identities and Poisson Dirichlet Cascades ... 475
15.3 The Baffioni-Rosati Theorem 483
15.4 Generic Sequences and Pure States 491
15.5 Determinators; Panchenko’s Invariance Theorem 500
15.6 Panchenko’s Ultrametricity Theorem 517
15.7 Problems: Strong Ultrametricity and Chaos 528
15.8 The Aizenman-Sims-Starr Scheme 538
15.9 Probability Measures on Hilbert Space 548
15.10 Notes and Comments ... 558

16. The p-Spin Interaction Model .. 559
16.1 Overview .. 559
16.2 Poisson-Dirichlet Distribution and Ghirlanda-Guerra Identities ... 560
16.3 A Priori Estimates ... 564
16.4 The Lumps and Their Weights 574
16.5 One Step of Replica-Symmetry Breaking 579
16.6 Computing $p_N(\beta)$... 592
16.7 A Research Problem: The Dynamical Transition 601
16.8 Notes and Comments ... 602

A. Appendix: Elements of Probability Theory 603
A.1 How to Use This Appendix .. 603
A.2 Gaussian Random Variables 603
A.3 Gaussian Integration by Parts 606
A.4 Tail Estimates ... 607
A.5 How to Use Tail Estimates .. 610
A.6 Bernstein’s Inequality ... 612
A.7 ε-Nets .. 614
A.8 Random Matrices .. 615
A.9 Poisson Random Variables and Point Processes 620
A.10 The Paley-Zygmund Inequality 622
A.11 Differential Inequalities ... 622

References .. 623

Index .. 629
Introduction

Welcome to the second volume of the treatise “Mean fields models for spin glasses”. You certainly do not need to have read all of Volume 1 to enjoy the present work. For the low-temperature results of Part II, starting with Chapter 12, only (the beginning of) Chapter 1 is really needed. This is also true for Chapter 11.

In the first part of this volume we continue, at a deeper level, the study of four of the models that were introduced in Volume I. Chapter 8 continues the study of the Shcherbina-Tirozzi model of Chapter 3; Chapter 9 continues the study of the Perceptron model of Chapter 2. Both chapters culminate in the proof of the “Gardner formula” which computes the proportion of the sphere (respectively the discrete cube) that belongs to the intersection of many random half-spaces. Chapters 8 and 9 are somewhat connected. They could in principle be read with only the previous understanding of the corresponding chapter of Volume 1, although we feel that it should help to have also read at least a part of each of Chapters 2 to Chapter 4, where the basic techniques are presented.

Chapter 10 continues and deepens the study of the Hopfield model of Chapter 4. We achieve a good understanding for a larger region of parameters than in Chapter 4 and this understanding is better, as we reach the correct rates of convergence in $1/N$. This chapter can be read independently of Chapters 8 and 9, and in principle with only the knowledge of some of the material of Chapter 4.

Chapter 11 provides an in-depth study of the Sherrington-Kirkpatrick model at high temperature and without external field. As this is a somewhat simpler case than the other models considered in this work, we can look deeper into it. Only (the beginning of) Chapter 1 is a prerequisite from this point on.

In my lecture in the International Congress of Mathematicians in Berlin, 1998, I presented (an earlier form of) some of the results explained here. At the end of the lecture, while I was still panting under the effort, a man (whose name I have mercifully forgotten) came to me, and handed me one of his papers with the following comment “you should read this instead of doing this trivial replica-symmetric stuff”. To him I dedicate these four chapters.
The second part of this volume explores genuine low-temperature results. In Chapter 12 we describe the Ghirlanda-Guerra identities and some rather striking consequences. This chapter can be read without any detailed knowledge of any other material presented so far.

In Chapters 13 and 14 we learn how to prove a celebrated formula of G. Parisi which gives the value of the “limiting free energy” at any temperature for the Sherrington-Kirkpatrick model. A very special case of this formula determines that high-temperature region of this model. We present first this special case in Chapter 13. This seems to require all the important ideas, and these are better explained in this technically simpler setting. Parisi’s formula is believed to be only a small part of a very beautiful structure that we call the Parisi Solution. We attempt to describe this structure in Chapter 15 where we also prove as many parts of it as is currently possible. Chapter 15 can be read without having read the details of the (difficult) proof of Parisi formula in Chapter 14, and is probably the highlight of this entire work. We also explain what are the remaining (fundamental) questions to be answered before we reach a really satisfactory understanding.

In the final Chapter 16 we study the p-spin interaction model, in a case not covered by the theory of Chapter 14. The approach is based on a clear physical picture of what happens in the phase of “one step of replica-symmetry breaking” and new aspects of the cavity method.

I am very much grateful to Sourav Chatterjee and Albert Hanen who read this entire volume, sometimes in several versions in the most difficult parts, and also to Dmitry Panchenko and Marc Yor who read most of it. Each suggested countlessly many improvements, sometimes correcting serious errors. Special thanks are also due to Wei-Kuo Chen. I claim full responsibility for all the remaining mistakes.