Preface

This textbook comprises the proceedings of the 18th EuroSPI Conference, held during June 27-29, 2011 in Roskilde, Denmark.

Since EuroSPI 2010 we extended the scope of the conference from software process improvement to systems, software and service-based process improvement. EMIRAcle is the institution for research in manufacturing and innovation, which came out as a result of the largest network of excellence for innovation in manufacturing in Europe. EMIRAcle key representatives joined the EuroSPI community, and papers as well as case studies for process improvement on systems and product level will be included in future.

Since 2008 EuroSPI partners have packaged SPI knowledge in job role training and established a European certification association (www.ecqa.org) to transport this knowledge Europe-wide using standardized certification and exam processes.

Another addition in to Roskilde 2011 conference was that results from the Danish SourceIT conference were presented in two sessions at the conference.

EuroSPI is an initiative with the following major action lines http://www.eurospi.net:

- Establishing an annual EuroSPI conference supported by Software Process Improvement networks from different EU countries.
- Establishing an Internet-based knowledge library, newsletters, and a set of proceedings and recommended books.
- Establishing an effective team of national representatives (from each EU country) growing step by step into more countries of Europe.
- Establishing a European Qualification Framework for a pool of professions related with SPI and management. This is supported by European certificates and examination systems.

EuroSPI has established a newsletter series (newsletter.eurospi.net), the SPI Manifesto (SPI = Systems, Software and Services Process Improvement), an experience library (library.eurospi.net) to be continuously extended over the years.
and made available to all attendees, and a Europe-wide certification for qualifications in the SPI area (www.ecqa.org, European Certification and Qualification Association).

A typical characterization of EuroSPI is reflected in a statement made by a company: "... the biggest value of EuroSPI lies in its function as a European knowledge and experience exchange mechanism for SPI and innovation."

Since its beginning in 1994 in Dublin, the EuroSPI initiative has outlined that there is no single silver bullet with which to solve SPI issues, but that you need to understand a combination of different SPI methods and approaches to achieve concrete benefits. Therefore each proceedings volume covers a variety of different topics, and at the conference we discuss potential synergies and the combined use of such methods and approaches. These proceedings contain selected research papers for six topics:

- Section I: SPI and Assessment
- Section II: SPI and Implementation
- Section III: SPI and Improvement Methods
- Section IV: SPI and Organization
- Section V: SPI and People/Teams
- Section VI: SPI and Reuse
- Section VII: Selected Key Notes for SPI Implementation

Section I presents studies on SPI and assessment. The authors provide different insights and additions into the assessment process. Mejia et al. present a multi-model workflow for assessing the solicitation and supplier agreement development process area of the CMMI-ACQ model. Mesquida and Pichaco look at best practices for IT service management. And Kasurinen et al. describe a self-assessment framework to be used with the new ISO/IEC 29119 test standard where the first results of use indicate that it is a very viable approach especially when combined with a maturity level-based approach.

Section II presents three papers on implementation issues in relation to SPI. First, Jäntti et al. use a case study to explain how to improve the deployment of IT service management processes. The explanation is that one should focus on understanding and training as well as dividing the implementation into smaller phases and milestones. Second, Kuhrman et al. provide insight into the usage style, ratings, and tempers of project managers working with a newer German government standard software development process for IT projects. Third, Sivakumar et al. present an approach improving verification and validation in the medical device domain.

Section III presents three papers more specifically dealing with implementation methods. Clarke and O’Connor look at the motivation for conducting SPI by providing further evidence of its positive impact. More specifically, they present a holistic scorecard (HSC) that can be used to examine business success systematically. Then Stettina and Heijstek propose a five-dimensional tool to foster self-reflection in agile software development teams. This paper also provides an account of using the tool with 79 individuals and 8 international Scrum teams showing that the tool is quite useful. Finally, Aysolmaz and Demirörs present an
SPI methodology with many details on life cycle, tasks, approaches, resources, tools, roles, participation of groups, and process assets, which has been tested in 10 organizations.

Section IV presents studies on SPI in relation to organizations. Lepmets et al. describe the results of an international survey showing that process assessment contributes positively to the internalization of process improvement goals. Neumann et al. investigate the importance of idea generation and idea sources in relation to innovation management for an organization. The investigation is based on a case study showing that more, and better, idea sources can boost innovation. Polgár and Biró describe the application of usability methodology for software process improvement and formulate specific ideas on how to adapt concrete usability improvement methods.

Section V presents studies on people and teams in relation to SPI. First, Basri and O’Connor explore the dynamics of software development teams – such as structure, process, communication, learning and sharing—and its impact on SPI. Second, Yilmaz and O’Connor use structural equation modelling for an empirical investigation of productivity enabling social factors in the software process. Third, Ringstad et al. argue for the use of diagnosis and action planning to improve teamwork in agile software development.

Section VI presents three papers on SPI and reuse. Valdes et al. describe a reusable process model called Tutelkan for enabling SPI in small settings. O’Leary and Richardson show a process model for product derivation coming out of several iterative development cycles and evaluated with both academic and industrial sources. Finally, Leitner and Kreiner investigate whether flexible product architecture conceptually is the same as flexible product line (PL) architecture. As a result they define what they call an ‘agile continuum’ emphasizing that there is no clear point in time when the product line process is finished and the product life cycle starts.

Section VII presents selected key notes from EuroSPI workshops concerning the future of SPI. From 2010 onwards EuroSPI invites recognized key researchers to publish new future directions of SPI.

Four invited papers illustrate that SPI can beneficially be implemented in very small organizations. Caballero et al. discuss how SCRUM can be implemented in a small SME. O’Connor and Laporte illustrate how ISO/IEC 29110 can be used to support the improvement needs of VSEs, while Mas and Mesquida present a tool to manage SPI in SMEs. Finally, McCaffery et al. provide a practical case study from the medical device sector.

Further invited papers illustrate that SPI has a direct impact on the innovation competencies of an organization. SPI helps to create continuous learning organizations. Kishida describes how SPI can help form innovative software projects, Messnarz et al. describe a future vision of SPI and innovation networking strategies in Europe, and Riel aims at pinpointing new innovation management challenges that have evolved in product development and manufacturing industries.
Two invited papers discuss how the new functional safety standards influence the longer standing SPI initiatives and how the existing paradigms have to be extended to cover functional safety aspects as well. Ovi Bachmann et al. illustrate the implementation on a case study in automotive industry, and Messnarz et al. show step by step how an ISO 15504-based improvement program is extended towards covering functional safety concepts.

Recommended Further Reading

In [1] the proceedings of three EuroSPI2 conferences were integrated into one book edited by 30 experts in Europe. The proceedings of EuroSPI2 2005, 2006, 2007, 2008, and 2009 have been published by Springer in [2], [3], [4], [5], [6] and [7], respectively.

June 2011

Rory V. O’Connor
Jan Pries-Heje
Richard Messnarz

References

Organization

Board Members

EuroSPI Board Members represent centers or networks of SPI excellence having extensive experience with SPI. The board members collaborate with different European SPINS (Software Process Improvement Networks). The following six organizations have been members of the conference board for the last 10 years:

- ASQ, http://www.asq.org
- ASQF, http://www.asqf.de
- DELTA, http://www.delta.dk
- ISCN, http://www.iscn.com
- SINTEF, http://www.sintef.no
- STTF, http://www.sttf.fi

EuroSPI Scientific Program Committee

EuroSPI established an international committee of selected well-known experts in SPI who are willing to be mentioned in the program and to review a set of papers each year. The list below represents the Research Program Committee members. EuroSPI also has a separate Industrial Program Committee responsible for the industry/experience contributions.

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambriola Vincenzo</td>
<td>Università di Pisa, Italy</td>
</tr>
<tr>
<td>Biffl Stefan</td>
<td>University of Technology Vienna, Austria</td>
</tr>
<tr>
<td>Biró Miklós</td>
<td>Dennis Gabor College, Hungary</td>
</tr>
<tr>
<td>Buglione Luigi</td>
<td>Engineering Ingegneria Informatica S.p.A., Italy</td>
</tr>
<tr>
<td>Calvo-Manzano Villalon</td>
<td>Universidad Politecnica de Madrid, Spain</td>
</tr>
<tr>
<td>José Antonio</td>
<td>Dundalk Institute of Technology, Ireland</td>
</tr>
<tr>
<td>Casey Valentine</td>
<td>University of Technology Sydney, Australia</td>
</tr>
<tr>
<td>Chua Bee Bee</td>
<td>Fraunhofer IESE, Germany</td>
</tr>
<tr>
<td>Ciolkowski Marcus</td>
<td>Lero, Irish Software Engineering Research Centre, Ireland</td>
</tr>
<tr>
<td>Clarke Paul</td>
<td></td>
</tr>
<tr>
<td>Dalcher Darren</td>
<td>Middlesex University, UK</td>
</tr>
<tr>
<td>De Amescua Seco Antonio</td>
<td>Carlos III University of Madrid, Spain</td>
</tr>
<tr>
<td>Dingsoyr Torgeir</td>
<td>SINTEF ICT, Norway</td>
</tr>
<tr>
<td>García Rubio Felix Oscar</td>
<td>University of Castilla-La Mancha, Spain</td>
</tr>
<tr>
<td>García-Guzman Javier</td>
<td>Carlos III University of Madrid, Spain</td>
</tr>
</tbody>
</table>
Gorschek Tony
Gresse von Wangenheim Christiane
Kreiner Christian
Landes Dieter
Lepmets Marion
Mäkinen Timo
Mas Pichaco Antonia
McCaffery Fergal
McQuaid Patricia
Münch Jürgen
O’Connor Rory V.
Phalp Keith
Richardson Ita
Riel Andreas
Sillitti Alberto
Smolander Kari
Stapel Kai
Tichkiewitch Serge
Vajde Horvat Romana
Ventura Martins Paula
Vondrak Ivo

Gorsing Institute of Technology, Sweden
Federal University of Santa Catarina, Brazil
Graz University of Technology, Austria
Fachhochschule Coburg, Germany
CRP Henri Tudor, Luxembourg
Tampere University of Technology, Finland
Université de les Illes Balears, Spain
Dundalk Institute of Technology, Ireland
California Polytechnic State University, USA
Fraunhofer IESE, Germany
Dublin City University, Ireland
Bournemouth University, UK
Lero, Irish Software Engineering Research Centre, Ireland
Grenoble Institute of Technology, Laboratory G-SCOP, France
Free University of Bolzano, Italy
Lappeenranta University of Technology, Finland
Leibniz Universität Hannover, Germany
Grenoble Institute of Technology, France
proHUMAN Ltd., Slovenia
FCT University of Algarve, Portugal
VSB - Technical University of Ostrava, Czech Republic

General Chair
Richard Messnarz

Scientific Chairs
Rory V. O’Connor
Jan Pries-Heje

All three Chairs, the General and the Research Chairs, have quite a complementary and interesting profile. Dr. Messnarz works in close collaboration with Austrian research institutions (universities of applied sciences) and large German automotive companies.

Dr. Rory O’Connor is a senior lecturer in Dublin City University and a senior researcher with Lero, the Irish Software Engineering Centre. His main research interests center on software processes and SPI in relation to small and very small organizations. Jan Pries-Heje is Professor in Information Systems at Roskilde
University. He is past President of the Association of Information Systems in Scandinavia (IRIS). Jan serves as the Danish National Representative to IFIP Technical Committee 8 on Information Systems where he is also Vice-Chair. Jan is currently Associate Editor for *MIS Quarterly, Information Systems Journal, and Business and Information Systems*; three of the best journals in the field of IS.

The experience portfolio of the Chairs covers different market segments, different sizes of organizations, and different SPI approaches. This strengthens the fundamental principle of EuroSPI² to cover a variety of different markets, experiences, and approaches.
Table of Contents

SPI and Assessment

A Multi-model Workflow before Establishing an Acquisition Contract Based on CMMI-ACQ Model .. 1
 Jezreel Mejia, Mirna Muñoz, Jose A. Calvo-Manzano,
 Gonzalo Cuevas, and Tomás San Feliu

ISO/IEC 15504-5 Best Practices for IT Service Management 14
 Antoni Lluís Mesquida and Antonia Mas

 Jussi Kasurinen, Per Runeson, Leah Riungu, and Kari Smolander

SPI and Implementation

Improving the Deployment of IT Service Management Processes:
A Case Study ... 37
 Marko Jäntti and Julia Järvinen

A Survey on the Application of the V-Modell XT in German Government Agencies.. 49
 Marco Kuhrmann, Christian Lange, and André Schnackenburg

Improving Verification and Validation in the Medical Device Domain . . 61
 M.S. Sivakumar, Valentine Casey, Fergal McCaffery, and
 Gerry Coleman

SPI and Improvement Methods

The Meaning of Success for Software SMEs: An Holistic Scorecard Based Approach .. 72
 Paul Clarke and Rory V. O’Connor

Five Agile Factors: Helping Self-management to Self-reflect 84
 Christoph J. Stettina and Werner Heijstek

A Detailed Software Process Improvement Methodology: BG-SPI 97
 Banu Aysolmaz and Onur Demirörs
SPI and Organization

Motivation and Empowerment in Process Improvement 109
Marion Lepmets and Eric Ras

Improvement of Innovation Management through the Enlargement of Idea Sources .. 121
Martin Neumann, Andreas Riel, and Daniel Brissaud

The Usability Approach in Software Process Improvement 133
Péter Balázs Polgár and Miklós Biró

SPI and People/Teams

A Study of Software Development Team Dynamics in SPI 143
Shuib Basri and Rory V. O’Connor

An Empirical Investigation into Social Productivity of a Software Process: An Approach by Using the Structural Equation Modeling 155
Murat Yılmaz and Rory V. O’Connor

Agile Process Improvement: Diagnosis and Planning to Improve Teamwork .. 167
Mats Angermo Ringstad, Torgeir Dingsøyr, and Nils Brede Moe

SPI and Reuse

The Tutelkan Reference Process: A Reusable Process Model for Enabling SPI in Small Settings 179
Gonzalo Valdés, Marcello Visconti, and Hernán Astudillo

Process Support for Product Line Application Engineering 191
Padraig O’Leary and Ita Richardson

Software Product Lines – An Agile Success Factor? 203
Andrea Leitner and Christian Kreiner

Selected Key Notes for SPI Implementation

SPI in SMEs

Introducing Scrum in a Very Small Enterprise: A Productivity and Quality Analysis .. 215
Edgar Caballero, Jose A. Calvo-Manzano, and Tomás San Feliu

Using ISO/IEC 29110 to Harness Process Improvement in Very Small Entities .. 225
Rory V. O’Connor and Claude Y. Laporte
A Software Tool to Support the Integrated Management of Software Projects in Mature SMEs ... 236
 Antonia Mas and Antoni Lluís Mesquida

How Can Software SMEs Become Medical Device Software SMEs 247
 Fergal McCaffery, Valentine Casey, and Martin McHugh

SPI and Innovation
Towards Innovative Software Projects – Creating Environments Supporting Innovation and Improvement ... 259
 Kouichi Kishida

The Future of SPI Knowledge and Networking in Europe – A Vision ... 268
 Richard Messnarz, Miklós Biró, Sonja Koinig, Michael Reiner, Romana Vajde-Horvat, and Damjan Ekert

Innovation Managers 2.0: Which Competencies? 278
 Andreas Riel

SPI and Functional Safety
Adapting the FMEA for Safety Critical Design Processes 290
 Ovi Bachmann, Bernhard Messner, and Richard Messnarz

Extending Automotive SPICE to Cover Functional Safety Requirements and a Safety Architecture ... 298
 Richard Messnarz, Ivan Sokic, Stephan Habel, Frank König, and Ovi Bachmann

Author Index ... 309