Volumes Published in the Series

Progress in Molecular and Subcellular Biology

Subseries: Marine Molecular Biotechnology

Volume 35
RNA Trafficking and Nuclear Structure Dynamics
Ph. Jeanteur (Ed.)

Volume 36
Viruses and Apoptosis
C. Alonso (Ed.)

Volume 38
Epigenetics and Chromatin
Ph. Jeanteur (Ed.)

Volume 40
Developmental Biology of Neoplastic Growth
A. Macieira-Coelho (Ed.)

Volume 41
Molecular Basis of Symbiosis
J. Overmann (Ed.)

Volume 44
Alternative Splicing and Disease
Ph. Jeanteur (Ed.)

Volume 45
Asymmetric Cell Division
A. Macieira Coelho (Ed.)

Volume 48
Centromere
Đurđica Ugarković (Ed.)

Volume 49
Aestivation
C.A. Navas and J.E. Carvalho (Eds.)

Volume 50
miRNA Regulation of the Translational Machinery
R.E. Rhoads (Ed.)

Volume 51
Long Non-Coding RNAs
Đurđica Ugarkovic (Ed.)

Volume 52
Molecular Biomineralization
W.E.G. Müller (Ed.)

Volume 37
Sponges (Porifera)
W.E.G. Müller (Ed.)

Volume 39
Echinodermata
V. Matranga (Ed.)

Volume 42
Antifouling Compounds
N. Fusetani and A.S. Clare (Eds.)

Volume 43
Molluscs
G. Cimino and M. Gavagnin (Eds.)

Volume 46
Marine Toxins as Research Tools
N. Fusetani and W. Kem (Eds.)

Volume 47
Biosilica in Evolution, Morphogenesis, and Nanobiotechnology
W.E.G. Müller and M.A. Grachev (Eds.)
Molecular Biomineralization

Aquatic Organisms Forming Extraordinary Materials
Living beings, in particular aquatic organisms are capable of synthesizing a high diversity of biominerals, ranging from silica, calcium carbonate, calcium phosphate to metallic, e.g. iron oxide, biominerals. Some of these biominerals, e.g. calcium carbonate, can be present in various phases, regulated by certain organic macromolecules, and they are found both in prokaryotic and eukaryotic organisms. This book of the series Progress in Molecular and Subcellular Biology gives a survey on the most recent developments in the field of Molecular Biomineralization highlighting the importance and the mechanisms of this process occurring at the interface between the inorganic and the organic world.

Part I on Metallic Biominerals describes the surprising ability of certain bacteria (magnetotactic bacteria) to biomineralize magnetic crystals in their “magnetosomes”, the synthesis of ferric oxide biominerals in protein (ferritin) nanocages, the oxidation of manganese by bacteria, as well as the contribution of microorganisms to the biogenic formation of mineral deposits in manganese nodules and seamount crusts. Part II on Biocalcium illustrates the molecular mechanisms of formation of calcium-based biominerals, including the calcium carbonate precipitation by bacteria and the formation of calcium carbonate and calcium phosphate biominerals in a variety of aquatic (invertebrate and vertebrate) organisms. Special emphasis is on the role of organic matrix proteins in the biomineralization of the Echinoderm calcite endoskeleton and the role of skeletogenic genes in the regulation of biocalcification in sea urchin. The main focus of Part III on Biosilica is on the unique enzyme, silicatein, which forms the biosilica skeleton of the siliceous sponges (demospines and hexactinellids). The extraordinary properties of this biomaterial, an inorganic-organic nanocomposite with the capability of “bio-sintering”, but also its bioactivity, in particular its ability to stimulate bone hydroxyapatite formation and to modulate the expression of certain cytokines involved in pathogenesis of osteoporosis have attracted increasing interest in its possible application in nanotechnology and nanobiomedicine. Part IV on Nacre will attract the attention of the reader on the intriguing function of matrix proteins in the calcification and decalcification of the hard cuticle in Crustaceans. The most recent
research advances in the formation of molluscan shell nacreous layers, the control of the nucleation and growth of aragonitic crystals as well as the function of extracellular matrix macromolecules in these biomineralization processes will be delineated.

This book hopes to contribute to our present understanding of the role of organic proteins and matrices in skeletal formation, one fundamental process of life, and biogenic mineral deposition in aqueous environments as a base for the biomimetic design of novel functional materials for future biotechnological and biomedical applications.

Werner E.G. Müller
Heinz C. Schröder
Institute for Physiological Chemistry
University Medical Center of the Johannes Gutenberg
University Mainz
Contents

Part I Metallic Biominerals

1 Magnetite Biomineralization in Bacteria ... 3
 Jens Baumgartner and Damien Faivre

2 Maxi- and Mini-Ferritins: Minerals and Protein Nanocages 29
 Loes E. Bevers and Elizabeth C. Theil

3 Manganese Oxidation by Bacteria: Biogeochemical Aspects 49
 P.P. Sujith and P.A. Loka Bharathi

4 Molecular Biomineralization: Toward an Understanding
 of the Biogenic Origin of Polymetallic Nodules, Seamount
 Crusts, and Hydrothermal Vents 77
 Xiaohong Wang, Matthias Wiens, Heinz C. Schröder,
 Ute Schloßmacher, and Werner E.G. Müller

Part II Biocalcium

5 Molecular Basis of Bacterial Calcium Carbonate Precipitation 113
 Brunella Perito and Giorgio Mastromei

6 Principles of Calcium-Based Biomineralization 141
 Qingling Feng

7 Molecular Aspects of Biomineralization of the Echinoderm
 Endoskeleton ... 199
 P.U.P.A. Gilbert and Fred H. Wilt
8 Echinoderms as Blueprints for Biocalcification: Regulation of Skeletogenic Genes and Matrices 225
Valeria Matranga, Rosa Bonaventura, Caterina Costa, Konstantinos Karakostis, Annalisa Pinsino, Roberta Russo, and Francesca Zito

Part III Biosilica – and its Application

9 The Unique Invention of the Siliceous Sponges: Their Enzymatically Made Bio-Silica Skeleton 251
Werner E.G. Müller, Xiaohong Wang, Ailin Chen, Shixue Hu, Lu Gan, Heinz C. Schröder, Ute Schloßmacher, and Matthias Wiens

10 Biosilica-Based Strategies for Treatment of Osteoporosis and Other Bone Diseases .. 283
Heinz C. Schröder, Matthias Wiens, Xiaohong Wang, Ute Schloßmacher, and Werner E.G. Müller

Part IV Nacre

11 Structure and Function of Matrix Proteins and Peptides in the Biominal Formation in Crustaceans 315
Hiromichi Nagasawa

12 Molecular Approaches to Understand Biomineralization of Shell Nacreous Layer .. 331
Li-ping Xie, Fang-jie Zhu, Yu-juan Zhou, Chao Yang, and Rong-qing Zhang

13 Acidic Shell Proteins of the Mediterranean Fan Mussel Pinna nobilis ... 353
Frédéric Marin, Prabakaran Narayanappa, and Sébastien Motreuil

Index .. 397
Contributors

P.A. Loka Bharathi National Institute of Oceanography (Council of Scientific and Industrial Research), Dona Paula, Goa, India

Jens Baumgartner Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany

Loes E. Bevers Council for BioIron, CHORI (Children’s Hospital Oakland Research Institute), Oakland, CA, USA

Rosa Bonaventura Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare “Alberto Monroy”, Palermo, Italy

Ailin Chen Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany; Yunnan Key Laboratory for Palaeobiology, Yunnan University, Kunming, China

Caterina Costa Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare “Alberto Monroy”, Palermo, Italy

Damien Faivre Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany

Qingling Feng Department of Materials Science and Engineering, Tsinghua University, Beijing, China

Lu Gan Yunnan Institute of Geological Sciences, Kunming, China

P.U.P.A. Gilbert Department of Physics, University of Wisconsin-Madison, Madison, WI, USA
P.P. Sujith National Institute of Oceanography (Council of Scientific and Industrial Research), Dona Paula, Goa, India

Elizabeth C. Theil Council for BioIron, CHORI (Children’s Hospital Oakland Research Institute), Oakland, CA, USA; Department of Nutritional Sciences and Molecular Toxicology, University of California-Berkeley, Berkeley, CA, USA

Xiaohong Wang Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany; National Research Center for Geoanalysis, Beijing, China

Matthias Wiens Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany; NanotecMARIN GmbH, Mainz, Germany

Fred H. Wilt Molecular and Cell Biology Department, University of California, Berkeley, CA, USA

Li-ping Xie Protein Science Laboratory of the Ministry of Education, Institute of Marine Biotechnology, School of Life Sciences, Tsinghua University, Beijing, P. R. China

Chao Yang Protein Science Laboratory of the Ministry of Education, Institute of Marine Biotechnology, School of Life Sciences, Tsinghua University, Beijing, P. R. China

Rong-qing Zhang Protein Science Laboratory of the Ministry of Education, Institute of Marine Biotechnology, School of Life Sciences, Tsinghua University, Beijing, P. R. China

Yu-juan Zhou Protein Science Laboratory of the Ministry of Education, Institute of Marine Biotechnology, School of Life Sciences, Tsinghua University, Beijing, P. R. China

Fang-jie Zhu Protein Science Laboratory of the Ministry of Education, Institute of Marine Biotechnology, School of Life Sciences, Tsinghua University, Beijing, P. R. China

Francesca Zito Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare “Alberto Monroy”, Palermo, Italy