Essential Software Architecture
Welcome to the second edition of Essential Software Architecture. It is 5 years since the first edition was published, and in the software architecture world, 5 years is a long time. Hence this updated version, with refreshed chapters to capture new developments in methods and technologies, and to relate relevant experiences from practise. There’s new material covering enterprise architecture, agile development, enterprise service bus technologies and RESTful Web services. All chapters have an updated and more extensive list of recommended reading, capturing many of the best new books, papers, web sites and blogs that I know of.

Most notably, the completely new Chap. 10 provides a case study on the design of the MeDICi technology, which extends an open source enterprise service bus with a component-based programming model. The MeDICi technology is open source and freely downloadable (http://www.medici.pnl.gov), making it a highly suitable tool for teaching the advanced concepts of middleware and architecture described in this text.

At its heart however, this remains a book that aims to succinctly impart a broad sweep of software architecture knowledge relating to systems built from mainstream middleware technologies. This includes a large, diverse spectrum of systems, ranging from Web-based ecommerce sites to scientific data management and high performance financial data analysis systems.

Motivation

What hasn’t changed in the last 5 years is that many projects I work with or review lack an explicit notion of an architectural design. Functional requirements are usually captured using traditional or agile techniques, agreed with stakeholders, and addressed through highly iterative or traditional waterfall methods. But the architectural issues, the “how” the application achieves its purpose, the “what” happens when things change and evolve or fail, are frequently implicit (this means they are in somebody’s head, maybe) at best. At worst, they are simply not addressed in any way that can be described in terms other than accidental. Frequently, when I ask for an overview of the application architecture and the driving nonfunctional
requirements at the first technical meeting, people start drawing on a whiteboard. Or they show me code and dive into the internals of the implementation based around their favorite, trendy technology. Either of these is rarely a good sign.

The problems and risks of poor architectural practices are well known and documented within the software engineering profession. A large body of excellent architectural knowledge is captured in broadly accessible books, journals and reports from members of the Software Engineering Institute (SEI), Siemens and various other renowned industrial and academic institutions.

While the focus of much of this literature is highly technical systems such as avionics, flight simulation, and telecommunications switching, this book leans more to the mainstream world of software applications. In a sense, it bridges the gap between the needs of the vast majority of software professionals and the current body of knowledge in software architecture. Specifically:

- It provides clear and concise discussions about the issues, techniques and methods that are at the heart of sound architectural practices.
- It describes and analyzes the general purpose component and middleware technologies that support many of the fundamental architectural patterns used in applications.
- It looks forward to how changes in technologies and practices may affect the next generation of business information systems.
- It uses familiar information systems as examples, taken from the author’s experiences in banking, e-commerce and government information systems.
- It provides many pointers and references to existing work on software architecture.

If you work as an architect or senior designer, or you want to one day, this book should be of value to you. And if you’re a student who is studying software engineering and need an overview of the field of software architecture, this book should be an approachable and useful first source of information. It certainly won’t tell you everything you need to know – that will take a lot more than can be included in a book of such modest length. But it aims to convey the essence of architectural thinking, practices and supporting technologies, and to position the reader to delve more deeply into areas that are pertinent to their professional life and interests.

Outline

The book is structured into three basic sections. The first is introductory in nature, and approachable by a relatively nontechnical reader wanting an overview of software architecture.

The second section is the most technical in nature. It describes the essential skills and technical knowledge that an IT architect needs.

The third is forward looking. Six chapters each introduce an emerging area of software practice or technology. These are suitable for existing architects and
designers, as well as people who’ve read the first two sections, and who wish to gain insights into the future influences on their profession.

More specifically:

- **Chapters 1–3**: These chapters provide the introductory material for the rest of the book, and the area of software architecture itself. Chapter 1 discusses the key elements of software architecture, and describes the roles of a software architect. Chapter 2 introduces the requirements for a case study problem, a design for which is presented in Chap. 9. This demonstrates the type of problem and associated description that a software architect typically works on. Chapter 3 analyzes the elements of some key quality attributes like scalability, performance and availability. Architects spend a lot of time addressing the quality attribute requirements for applications. It’s therefore essential that these quality attributes are well understood, as they are fundamental elements of the knowledge of an architect.

- **Chapters 4–10**: These chapters are the technical backbone of the book. Chapter 4 introduces a range of fundamental middleware technologies that architects commonly leverage in application solutions. Chapter 5 is devoted to describing Web services, including both SOAP and REST-based approaches. Chapter 6 builds on the previous chapters to explain advanced middleware platforms such as enterprise service bus technologies. Chapter 7 presents a three stage iterative software architecture process that can be tailored to be as agile as a project requires. It describes the essential tasks and documents that involve an architect. Chapter 8 discusses architecture documentation, and focuses on the new notations available in the UML version 2.0. Chapter 9 brings together the information in the first 6 chapters, showing how middleware technologies can be used to address the quality attribute requirements for the case study. It also demonstrates the use of the documentation template described in Chap. 8 for describing an application architecture. Chapter 10 provides another practical case study describing the design of the open source MeDICi Integration Framework, which is a specialized API for building applications structured as pipelines of components.

- **Chapters 11–15**: These chapters each focus on an emerging technique or technology that will likely influence the futures of software architects. These include software product lines, model-driven architecture, aspect-oriented architecture and the Semantic Web. Each chapter introduces the essential elements of the method or technology, describes the state-of-the-art and speculates about how increasing adoption is likely to affect the required skills and practices of a software architect. Each chapter also relates its approach to an extension of the ICDE case study in Chap. 9.
First, thanks to the chapter contributors who have helped provide the content on software product lines (Mark Staples), aspect-oriented programming (Jenny Liu), model-driven development (Liming Zhu), Web services (Paul Greenfield) and the Semantic Web (Judi Thomson). Adam Wynne also coauthored the chapter on MeDICi. Your collective efforts and patience are greatly appreciated.

Contact details for the contributing authors are as follows:

Dr Mark Staples, National ICT Australia, email: mark.staples@nicta.com.au
Dr Liming Zhu, National ICT Australia, email: liming.zhu@nicta.com.au
Dr Yan Liu, Pacific Northwest National Lab, USA, email: jenny.liu@nicta.com.au
Adam Wynne, Pacific Northwest National Lab, USA, email: adam.wynne@pnl.gov
Paul Greenfield, School of IT, CSIRO, Australia, email: paul.greenfield@csiro.au
Dr Judi McCuaig, University of Guelph, Canada, email: judi@cis.uguelph.ca

I’d also like to thank everyone at Springer who has helped make this book a reality, especially the editor, Ralf Gerstner.

I’d also like to acknowledge the many talented software architects, engineers and researchers who I’ve worked closely with recently and/or who have helped shape my thinking and experience through long and entertaining geeky discussions. In no particular order these are Anna Liu, Paul Greenfield, Shiping Chen, Paul Brebner, Jenny Liu, John Colton, Karen Schchardt, Gary Black, Dave Thurman, Jereme Haack, Sven Overhage, John Grundy, Muhammad Ali Babar, Justin Almquist, Rik Littlefield, Kevin Dorow, Steffen Becker, Ranata Johnson, Len Bass, Lei Hu, Jim Thomas, Deb Gracio, Nihar Trivedi, Paula Cowley, Jim Webber, Adrienne Andrew, Dan Adams, Dean Kuo, John Hoskins, Shuping Ran, Doug Palmer, Nick Cramer, Liming Zhu, Ralf Reussner, Mark Hoza, Shijian Lu, Andrew Cowell, Tariq Al Naeem, Wendy Cowley and Alan Fekete.
Contents

1 Understanding Software Architecture 1
1.1 What is Software Architecture? .. 1
1.2 Definitions of Software Architecture 2
 1.2.1 Architecture Defines Structure 3
 1.2.2 Architecture Specifies Component Communication 4
1.3 Architecture Addresses Nonfunctional Requirements 5
 1.3.1 Architecture Is an Abstraction 6
 1.3.2 Architecture Views .. 7
1.4 What Does a Software Architect Do? 8
1.5 Architectures and Technologies 9
1.6 Architect Title Soup .. 11
1.7 Summary ... 12
1.8 Further Reading ... 13
 1.8.1 General Architecture ... 13
 1.8.2 Architecture Requirements 13
 1.8.3 Architecture Patterns ... 14
 1.8.4 Technology Comparisons 14
 1.8.5 Enterprise Architecture 15

2 Introducing the Case Study ... 17
2.1 Overview ... 17
2.2 The ICDE System .. 17
2.3 Project Context .. 19
2.4 Business Goals .. 21
2.5 Constraints ... 22
2.6 Summary ... 22

3 Software Quality Attributes ... 23
3.1 Quality Attributes ... 23
3.2 Performance ... 24
 3.2.1 Throughput ... 24
 3.2.2 Response Time ... 25
3.2.3 Deadlines .. 25
3.2.4 Performance for the ICDE System 26

3.3 Scalability ... 27
3.3.1 Request Load ... 27
3.3.2 Simultaneous Connections 29
3.3.3 Data Size .. 29
3.3.4 Deployment .. 30
3.3.5 Some Thoughts on Scalability 30
3.3.6 Scalability for the ICDE Application 30

3.4 Modifiability .. 30
3.4.1 Modifiability for the ICDE Application 33

3.5 Security .. 33
3.5.1 Security for the ICDE Application 34

3.6 Availability .. 34
3.6.1 Availability for the ICDE Application 35

3.7 Integration ... 35
3.7.1 Integration for the ICDE Application 36

3.8 Other Quality Attributes ... 36

3.9 Design Trade-Offs .. 37

3.10 Summary ... 37

3.11 Further Reading ... 38

4 An Introduction to Middleware Architectures
and Technologies ... 39
4.1 Introduction ... 39
4.2 Middleware Technology Classification 40
4.3 Distributed Objects .. 41
4.4 Message-Oriented Middleware 43
4.4.1 MOM Basics ... 44
4.4.2 Exploiting MOM Advanced Features 45
4.4.3 Publish–Subscribe ... 50
4.5 Application Servers .. 54
4.5.1 Enterprise JavaBeans .. 55
4.5.2 EJB Component Model 56
4.5.3 Stateless Session Bean Programming Example 57
4.5.4 Message-Driven Bean Programming Example 58
4.5.5 Responsibilities of the EJB Container 59
4.5.6 Some Thoughts ... 60
4.6 Summary .. 61
4.7 Further Reading ... 62
4.7.1 CORBA .. 62
4.7.2 Message-Oriented Middleware 62
4.7.3 Application Servers ... 63
5 Service-Oriented Architectures and Technologies 65
 5.1 Background .. 65
 5.2 Service-Oriented Systems 66
 5.2.1 Boundaries Are Explicit 68
 5.2.2 Services Are Autonomous 69
 5.2.3 Share Schemas and Contracts, Not Implementations 69
 5.2.4 Service Compatibility Is Based on Policy 70
 5.3 Web Services .. 71
 5.4 SOAP and Messaging .. 73
 5.5 UDDI, WSDL, and Metadata 74
 5.6 Security, Transactions, and Reliability 77
 5.7 RESTful Web Services ... 78
 5.8 Conclusion and Further Reading 79

6 Advanced Middleware Technologies 81
 6.1 Introduction .. 81
 6.2 Message Brokers ... 81
 6.3 Business Process Orchestration 87
 6.4 Integration Architecture Issues 91
 6.5 What Is an Enterprise Service Bus 95
 6.6 Further Reading .. 95

7 A Software Architecture Process 97
 7.1 Process Outline ... 97
 7.1.1 Determine Architectural Requirements 98
 7.1.2 Identifying Architecture Requirements 98
 7.1.3 Prioritizing Architecture Requirements 99
 7.2 Architecture Design ... 101
 7.2.1 Choosing the Architecture Framework 102
 7.2.2 Allocate Components 108
 7.3 Validation .. 110
 7.3.1 Using Scenarios ... 111
 7.3.2 Prototyping ... 113
 7.4 Summary and Further Reading 114

8 Documenting a Software Architecture 117
 8.1 Introduction .. 117
 8.2 What to Document .. 118
 8.3 UML 2.0 ... 119
 8.4 Architecture Views 120
 8.5 More on Component Diagrams 123
 8.6 Architecture Documentation Template 126
 8.7 Summary and Further Reading 127
9 Case Study Design .. 129
 9.1 Overview .. 129
 9.2 ICDE Technical Issues ... 129
 9.2.1 Large Data .. 129
 9.2.2 Notification ... 131
 9.2.3 Data Abstraction .. 131
 9.2.4 Platform and Distribution Issues 131
 9.2.5 API Issues ... 132
 9.2.6 Discussion ... 133
 9.3 ICDE Architecture Requirements 133
 9.3.1 Overview of Key Objectives 133
 9.3.2 Architecture Use Cases 134
 9.3.3 Stakeholder Architecture Requirements 134
 9.3.4 Constraints .. 136
 9.3.5 Nonfunctional Requirements 136
 9.3.6 Risks .. 137
 9.4 ICDE Solution .. 137
 9.4.1 Architecture Patterns ... 137
 9.4.2 Architecture Overview .. 138
 9.4.3 Structural Views .. 139
 9.4.4 Behavioral Views ... 142
 9.4.5 Implementation Issues .. 145
 9.5 Architecture Analysis ... 145
 9.5.1 Scenario Analysis ... 145
 9.5.2 Risks .. 146
 9.6 Summary .. 146

10 Middleware Case Study: MeDICi 147
 10.1 MeDICi Background .. 147
 10.2 MeDICi Hello World .. 148
 10.3 Implementing Modules .. 151
 10.3.1 MifProcessor ... 151
 10.3.2 MifObjectProcessor 151
 10.3.3 MifMessageProcessor 152
 10.3.4 Module Properties ... 152
 10.4 Endpoints and Transports ... 153
 10.4.1 Connectors ... 153
 10.4.2 Supported Transports 154
 10.5 MeDICi Example .. 157
 10.5.1 Initialize Pipeline .. 158
 10.5.2 Chat Component ... 159
 10.5.3 Implementation code 161
 10.6 Component Builder .. 161
 10.7 Summary ... 163
 10.8 Further Reading ... 163
11 Looking Forward

11.1 Introduction .. 165
11.2 The Challenges of Complexity 165
 11.2.1 Business Process Complexity 166
11.3 Agility ... 167
11.4 Reduced Costs ... 168
11.5 What Next ... 169

12 The Semantic Web

12.1 ICDE and the Semantic Web 171
12.2 Automated, Distributed Integration and Collaboration 172
12.3 The Semantic Web .. 173
12.4 Creating and Using Metadata for the Semantic Web 174
12.5 Putting Semantics in the Web 176
12.6 Semantics for ICDE ... 178
12.7 Semantic Web Services ... 180
12.8 Continued Optimism ... 181
12.9 Further Reading ... 182

13 Aspect Oriented Architectures

13.1 Aspects for ICDE Development 185
13.2 Introduction to Aspect-Oriented Programming 186
 13.2.1 Crosscutting Concerns 186
 13.2.2 Managing Concerns with Aspects 187
 13.2.3 AOP Syntax and Programming Model 188
 13.2.4 Weaving ... 189
13.3 Example of a Cache Aspect 190
13.4 Aspect-Oriented Architectures 191
13.5 Architectural Aspects and Middleware 192
13.6 State-of-the-Art .. 193
 13.6.1 Aspect Oriented Modeling in UML 193
 13.6.2 AOP Tools ... 193
 13.6.3 Annotations and AOP 194
13.7 Performance Monitoring of ICDE with AspectWerkz 195
13.8 Conclusions .. 197
13.9 Further Reading ... 198

14 Model-Driven Architecture

14.1 Model-Driven Development for ICDE 201
14.2 What is MDA? .. 203
14.3 Why MDA? .. 205
 14.3.1 Portability .. 205
 14.3.2 Interoperability ... 206
 14.3.3 Reusability ... 207
14.4 State-of-Art Practices and Tools ... 208
 14.4.1 AndroMDA .. 208
 14.4.2 ArcStyler .. 209
 14.4.3 Eclipse Modeling Framework 209
14.5 MDA and Software Architecture 210
 14.5.1 MDA and Nonfunctional Requirements 211
 14.5.2 Model Transformation and Software Architecture 211
 14.5.3 SOA and MDA .. 212
 14.5.4 Analytical Models are Models Too 212
14.6 MDA for ICDE Capacity Planning 214
14.7 Summary and Further Reading 216

15 Software Product Lines .. 219
15.1 Product Lines for ICDE .. 219
15.2 Software Product Lines ... 220
 15.2.1 Benefiting from SPL Development 222
 15.2.2 Product Lines for ICDE 223
15.3 Product Line Architecture ... 223
 15.3.1 Find and Understand Software 224
 15.3.2 Bring Software into the Development Context 225
 15.3.3 Invoke Software ... 225
 15.3.4 Software Configuration Management for Reuse 225
15.4 Variation Mechanisms ... 227
 15.4.1 Architecture-Level Variation Points 227
 15.4.2 Design-Level Variation 227
 15.4.3 File-Level Variation ... 228
 15.4.4 Variation by Software Configuration Management 228
 15.4.5 Product Line Architecture for ICDE 228
15.5 Adopting Software Product Line Development 229
 15.5.1 Product Line Adoption Practice Areas 231
 15.5.2 Product Line Adoption for ICDE 231
15.6 Ongoing Software Product Line Development 232
 15.6.1 Change Control .. 232
 15.6.2 Architectural Evolution for SPL Development 233
 15.6.3 Product Line Development Practice Areas 234
 15.6.4 Product Lines with ICDE 234
15.7 Conclusions ... 235
15.8 Further Reading ... 236

Index ... 239