Research in Multi-Agent Systems offers promising technologies to implement non-playing characters embodying more realistic cognitive models. However, the technologies used in today’s game engines and multi-agent platforms are not readily compatible due to some differences in their major concerns. For example, where game engines focus on real-time aspects that prioritize efficiency and central control, multi-agent platforms privilege agent autonomy instead. And while multi-agent platforms typically offer sophisticated communication capabilities, these may not be usable, or even appropriate, when the agents are coupled to a game. So, although increased autonomy and intelligence may offer benefits for a more compelling game play, and may even be essential for serious games, it is not clear whether current multi-agent platforms offer the means that are needed to accomplish this. Indeed, when current approaches to game design are used to incorporate state-of-the-art Multi-Agent System technology, the autonomy and intelligence of the agents might even be seen as more of a hindrance than an asset. A very similar argument can be given for approaches centered around agent-based (social) simulations.

In the current volume, Agents for Games and Simulations, we include papers presented at AGS 2010: the Second International workshop on Agents for Games and Simulations held on May 10 in Toronto. We received 12 submissions of high quality covering many of the aspects mentioned above. Each submission was reviewed by at least three Program Committee members. We accepted 11 papers for presentation, which can be found in this volume. This set of papers is complemented by some extended versions of papers from other workshops and the AAMAS conference in Toronto. Together this collection of papers give some answers to the issues raised above.

We have grouped the papers into three sections. The first section contains papers that are related to architectures combining agents and game engines. Besides new results from the Pogamut platform itself, there is also a paper discussing the integration of GOAL agents to Unreal Engine with the use of the Pogamut framework. It is nice to see this result stemming from last year’s AGS workshop. Another paper in this section compares different multi-agent-based systems for crowd simulation. Indeed this is an important topic for many (serious) games incorporating disasters in public spaces where crowds are involved. The other two papers in this section treat issues with individual agent behavior in games. One looks at the combination of human and AI control of virtual characters, such that humans take care of those aspects that they are good at and the AI controls the parts that humans are less good at. This is an interesting point of view that might lead to new types of agent architectures as well. The last paper advocates the use of ontologies during the design of the game environment such that agents can use the ontology in their communication.
prevents, for example, one agent referring to an object as being a table while another agent calls the object a desk. Avoiding this possible confusion makes it possible to model the communication at a more abstract level, providing more flexible protocols.

In the second section of this volume we included papers that focus on the training aspects of the games. Three of the papers discuss the directing of the game. The first paper uses value-driven characters. The second paper uses some implicit mechanisms in the game and the third paper discusses a planning approach. The last paper in this section is also about keeping the game interesting, but it uses an on-line adaptation mechanism to keep the game interesting for the trainee. All of these papers show that the objective of agents in a gaming environment should not just be to optimize some behavior, but rather to behave in a way that the game is as interesting as possible for the user. Therefore we should keep track of some overall storyline and objectives of the game as a whole.

The last section groups some papers around social and organizational aspects of games and agents. Two of the papers discuss certain approaches from agent institutions and organizations to model and implement the agent-based games. Using these approaches gives agents a degree of individual freedom but also keeps some central control over the game. The third paper discusses formal approaches to model social practices which can be used in gaming. Finally, one paper discusses the semi-automated classification of speech acts in a game. This type of data-mining technique can assist in modeling interesting behavior of agents based on the behavior of human players in a game.

All in all we are very happy with the papers contained in this volume. We are sure they form a valuable overview of the current state of the art for people that want to combine agent technology with (serious) games. Finally, we would like to thank the Program Committee members, without whom the reviewing would not have been possible and who gave valuable comments on all papers.

November 2010

Frank Dignum
Conference Organization

Program Chairs

Frank Dignum Utrecht University, The Netherlands
Annerieke Heuvelink TNO, The Netherlands
Jeff Orkin MIT, USA
Jeff Bradshaw IHMC, USA

Program Committee

Andre Campos UFRN, Brazil
Bill Clancey NASA, USA
Rosaria Conte ISTC-CNR, Italy
Vincent Corruble LIP6, France
Yves Demazeau CNRS-LIG, France
Virginia Dignum Delft University, The Netherlands
Willem van Doesburg TNO, The Netherlands
Alexis Drogoul LIP6, France
Corinna Elsenbroich University of Surrey, UK
Klaus Fischer DFKI, Germany
Koen Hindriks Delft University, The Netherlands
Michael Lewis University of Pittsburgh, USA
Stacy Marsella USC, USA
Hector Munoz-Avila Lehigh University, USA
Anton Nijholt UT, The Netherlands
Emma Norling MMU, UK
Joost van Oijen VSTEP, The Netherlands
Ana Paiva IST, Portugal
Michal Pechoucek CTU, Czech Republic
David Pynadath USC, USA
Gopal Ramchurn University of Southampton, UK
Avi Rosenfeld JCT, Israel
David Sarne Bar Ilan University, Israel
Barry Silverman University of Pennsylvania, USA
Pieter Spronck Tilburg University, The Netherlands
Duane Szafron University of Alberta, Canada
Joost Westra Utrecht University, The Netherlands

External Reviewer

Ivo Swartjes Twente University, The Netherlands
Table of Contents

Section 1. Architectures

UNREAL GOAL BOTS: Conceptual Design of a Reusable Interface .. 1

Koen V. Hindriks, Birna van Riemsdijk, Tristan Behrens, Rien Korstanje, Nick Kraayenbrink, Wouter Pasman, and Lennard de Rijk

A Periphery of Pogamut: From Bots to Agents and Back Again .. 19

Jakub Gemrot, Cyril Brom, and Tomáš Plch

Goal-Based Communication Using BDI Agents as Virtual Humans in Training: An Ontology Driven Dialogue System .. 38

Joost van Oijen, Willem van Doesburg, and Frank Dignum

Evaluation and Comparison of Multi-agent Based Crowd Simulation Systems 53

Bikramjit Banerjee and Landon Kraemer

Towards an Architecture for Collaborative Human/AI Control of Interactive Characters 67

James Niehaus and Peter Weyhrauch

Section 2. Training and Story Lines

An Architecture for Directing Value-Driven Artificial Characters .. 76

Rossana Damiano and Vincenzo Lombardo

Implicitly and Intelligently Influencing the Interactive Experience .. 91

Michael J. O’Grady, Mauro Dragone, Richard Tynan, Gregory M.P. O’Hare, Jie Wan, and Conor Muldoon

Creating Customized Game Experiences by Leveraging Human Creative Effort: A Planning Approach .. 99

Boyang Li and Mark O. Riedl

Guiding User Adaptation in Serious Games ... 117

Joost Westra, Frank Dignum, and Virginia Dignum

Using Agent Technology to Build a Real-World Training Application 132

Michal Cap, Annerieke Hewelink, Karel van den Bosch, and Willem van Doesburg
<table>
<thead>
<tr>
<th>Section 3. Social Behavior and Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semi-Automated Dialogue Act Classification for Situated Social Agents in Games</td>
</tr>
<tr>
<td>Jeff Orkin and Deb Roy</td>
</tr>
<tr>
<td>Using Exclusion Logic to Model Social Practices</td>
</tr>
<tr>
<td>Richard Evans</td>
</tr>
<tr>
<td>Making Games ALIVE: An Organisational Approach</td>
</tr>
<tr>
<td>Sergio Alvarez-Napagao, Fernando Koch, Ignasi Gómez-Sebastià, and Javier Vázquez-Salceda</td>
</tr>
<tr>
<td>Building Quests for Online Games with Virtual Institutions</td>
</tr>
<tr>
<td>Gustavo Aranda, Tomas Trescak, Marc Esteva, and Carlos Carrascosa</td>
</tr>
<tr>
<td>Author Index</td>
</tr>
</tbody>
</table>