Series Editors
Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors
Yiyu Yao
University of Regina, Regina, SK, Canada
E-mail: yyao@cs.uregina.ca

Ron Sun
Rensselaer Polytechnic Institute, Troy, NY, USA
E-mail: rsun@rpi.edu

Tomaso Poggio
Massachusetts Institute of Technology, Cambridge, MA, USA
E-mail: tp@ai.mit.edu

Jiming Liu
Hong Kong Baptist University, Kowloon Tong, Hong Kong
E-mail: jiming@comp.hkbu.edu.hk

Ning Zhong
Maebashi Institute of Technology, Maebashi-City, Japan
E-mail: zhong@maebashi-it.ac.jp

Jimmy Huang
York University, Toronto, ON, Canada
E-mail: jhuang@yorku.ca

Library of Congress Control Number: 2010932525

CR Subject Classification (1998): I.2, I.4, I.5, H.3, H.5, H.4

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law.

springer.com
© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180
Preface

This volume contains the papers selected for presentation at The 2010 International Conference on Brain Informatics (BI 2010) held at York University, Toronto, Canada, during August 28–30, 2010. It was organized by the Web Intelligence Consortium (WIC), the IEEE Computational Intelligence Society Task Force on Brain Informatics (IEEE-CIS TF-BI), and York University. The conference was held jointly with the 2010 International Conference on Active Media Technology (AMT 2010).

Brain informatics (BI) has emerged as an interdisciplinary research field that focuses on studying the mechanisms underlying the human information processing system (HIPS). It investigates the essential functions of the brain, ranging from perception to thinking, and encompassing such areas as multi-perception, attention, memory, language, computation, heuristic search, reasoning, planning, decision-making, problem-solving, learning, discovery, and creativity. The goal of BI is to develop and demonstrate a systematic approach to achieving an integrated understanding of both macroscopic and microscopic-level working principles of the brain, by means of experimental, computational, and cognitive neuroscience studies, as well as utilizing advanced Web intelligence (WI)-centric information technologies. BI represents a potentially revolutionary shift in the way that research is undertaken. It attempts to capture new forms of collaborative and interdisciplinary work. In this vision, new kinds of BI methods and global research communities will emerge, through infrastructure on the wisdom Web and knowledge grids that enable high-speed and distributed, large-scale analysis and computations, and radically new ways of sharing data/knowledge.

The Brain Informatics Conferences started with the First WICI International Workshop on Web Intelligence meets Brain Informatics (WImBI 2006), held at Beijing, China, December 15–16, 2006. The second conference, Brain Informatics 2009, was held again in Beijing, China, October 22–24, 2009. This series is the first conference specifically dedicated to interdisciplinary research in BI and provides an international forum to bring together researchers and practitioners from diverse fields, such as computer science, information technology, artificial intelligence, Web intelligence, cognitive science, neuroscience, medical science, life science, economics, data mining, data science and knowledge science, intelligent agent technology, human–computer interaction, complex systems, and systems science, to present the state of the art in the development of BI, and to explore the main research problems in BI that lie in the interplay between the studies of the human brain and the research of informatics. All the papers submitted to BI 2010 were rigorously reviewed by three committee members and external reviewers. The selected papers offered new insights into the research challenges and development of BI.
There are bidirectional mutual support tracks of BI research. In one direction, one models and characterizes the functions of the human brain based on the notions of information processing systems. WI-centric information technologies are applied to support brain science studies. For instance, the wisdom Web, knowledge grids, and cloud computing enable high-speed, large-scale analysis, simulation, and computation as well as new ways of sharing research data and scientific discoveries. In another direction, informatics-enabled brain studies, e.g., based on fMRI, EEG, and MEG, significantly broaden the spectrum of theories and models of brain sciences and offer new insights into the development of human-level intelligence toward brain-inspired wisdom Web computing.

BI 2010 had a very exciting program with many features, ranging from keynote talks, regular technical sessions, WIC featured sessions and social programs. All of these would not have been possible without the great support of the authors in submitting and presenting their best and latest research results, the distinguished contributions of keynote speakers, Vinod Goel (York University, Canada), Jianhua Ma (Hosei University, Japan), Ben Shneiderman (University of Maryland, USA) and Yingxu Wang (University of Calgary, Canada), in preparing and delivering their very stimulating talks, and the generous dedication of the Program Committee members and the external reviewers in reviewing the submitted papers. We wish to express our gratitude to all authors, the keynote speakers, and the members of the Conference Committees for their instrumental and unfailing support.

BI 2010 could not have taken place without the great team effort of the Local Organizing Committee, the support of the International WIC Institute, Beijing University of Technology, China and York University, Canada. Our special thanks go to Aijun An, Juzhen Dong, Jian Yang, and Daniel Tao for organizing and promoting BI 2010 and coordinating with AMT 2010. We are grateful to the Springer Lecture Notes in Computer Science (LNCS/LNAI) team for their generous support. We thank Alfred Hofmann and Anna Kramer of Springer for their help in coordinating the publication of this special volume in an emerging and interdisciplinary research field.

August 2010

Yiyu Yao
Ron Sun
Tomaso Poggio
Jiming Liu
Ning Zhong
Jimmy Huang
Conference Organization

Conference General Chairs

Tomaso Poggio  
Massachusetts Institute of Technology, USA

Jiming Liu  
International WIC Institute,  
Beijing University of Technology, China  
Hong Kong Baptist University, Hong Kong

Program Chairs

Yiyu Yao  
International WIC Institute,  
Beijing University of Technology, China  
University of Regina, Canada

Ron Sun  
Rensselaer Polytechnic Institute, USA

Organizing Chair

Jimmy Huang  
York University, Toronto, Canada

Publicity Chairs

Jian Yang  
International WIC Institute,  
Beijing University of Technology, China

Daniel Tao  
Queensland University of Technology, Australia

IEEE-CIS TF-BI Chair

Ning Zhong  
Maebashi Institute of Technology, Japan  
International WIC Institute,  
Beijing University of Technology, China

WIC Co-chairs/Directors

Ning Zhong  
Maebashi Institute of Technology, Japan

Jiming Liu  
Hong Kong Baptist University, Hong Kong

WIC Advisory Board

Edward A. Feigenbaum  
Stanford University, USA

Setsuo Ohsuga  
University of Tokyo, Japan
VIII Conference Organization

Benjamin Wah University of Illinois, Urbana-Champaign, USA
Philip Yu University of Illinois, Chicago, USA
L.A. Zadeh University of California, Berkeley, USA

WIC Technical Committee

Jeffrey Bradshaw UWF/Institute for Human and Machine Cognition, USA
Nick Cercone York University, Canada
Dieter Fensel University of Innsbruck, Austria
Georg Gottlob Oxford University, UK
Lakhmi Jain University of South Australia, Australia
Jianchang Mao Yahoo! Inc., USA
Pierre Morizet-Mahoudeaux Compiegne University of Technology, France
Hiroshi Motoda Osaka University, Japan
Toyoaki Nishida Kyoto University, Japan
Andrzej Skowron Warsaw University, Poland
Jinglong Wu Okayama University, Japan
Xindong Wu University of Vermont, USA
Yiyu Yao University of Regina, Canada

Program Committee

John R. Anderson Carnegie Mellon University, USA
Chang Cai National Rehabilitation Center for Persons with Disabilities, Japan
Xiaocong Fan The Pennsylvania State University, USA
Mohand-Said Hacid Universite Claude Bernard Lyon 1, France
D. Frank Hsu Fordham University, USA
Kazuyuki Imamura Maebashi Institute of Technology, Japan
Kuncheng Li Xuanwu Hospital, China
Peipeng Liang Beijing University of Technology, China
Pawan Lingras Saint Mary’s University, Canada
Duqian Miao Tongji University, China
Mariofanna Milanova University of Arkansas at Little Rock, USA
Sankar Kumar Pal Indian Statistical Institute, India
Frank Ritter Penn State University, USA
Hideyuki Sawada Kagawa University, Japan
Lael Schooler Max Planck Institute for Human Development, Germany
Tomoaki Shirao Gunma University Graduate School of Medicine, Japan
Andrzej Skowron Warsaw University, Poland
Dominik Slezak University of Warsaw and Infobright Inc., Poland
Diego Sona  
Fondazione Bruno Kessler, Italy

Piotr S. Szczepaniak  
Technical University of Lodz, Poland

Shusaku Tsumoto  
Shimane University, Japan

Frank van der Velde  
Leiden University, The Netherlands

Guoyin Wang  
Chongqing University of Posts and Telecommunications, China

Jinglong Wu  
Okayama University, Japan

Jian Yang  
Beijing University of Technology, China

Fabio Massimo Zanzotto  
University of Rome “Tor Vergata”, Italy

Bo Zhang  
Tsinghua University, China

Yanqing Zhang  
Georgia State University, USA

Ning Zhong  
Maebashi Institute of Technology, Japan

Haiyan Zhou  
International WIC Institute, Beijing University of Technology, China

Yangyong Zhu  
Fudan University, China

**Additional Reviewers**

Paolo Avesani  
Yang Mei  
Andrea Mognon

Emanuele Olivetti  
Linchang Qin  
Shujuan Zhang
# Table of Contents

## Keynote Talks

Fractionating the Rational Brain ............................................. 1  
*Vinod Goel*

Cognitive Informatics and Denotational Mathematical Means for Brain Informatics ................................................................. 2  
*Yingxu Wang*

## Cognitive Computing

An Adaptive Model for Dynamics of Desiring and Feeling Based on Hebbian Learning .......................................................... 14  
*Tibor Bosse, Mark Hoogendoorn, Zulfiqar A. Memon,  
Jan Treur, and Muhammad Umair*

Modelling the Emergence of Group Decisions Based on Mirroring and Somatic Marking .............................................................. 29  
*Mark Hoogendoorn, Jan Treur, C. Natalie van der Wal, and  
Arlette van Wissen*

Rank-Score Characteristics (RSC) Function and Cognitive Diversity ... 42  
*D. Frank Hsu, Bruce S. Kristal, and Christina Schweikert*

Cognitive Effort for Multi-agent Systems ................................. 55  
*Luca Longo and Stephen Barrett*

Behavioural Abstraction of Agent Models Addressing Mutual Interaction of Cognitive and Affective Processes ......................... 67  
*Alexei Sharpanskykh and Jan Treur*

## Data Brain and Analysis

The Effect of the Normalization Strategy on Voxel-Based Analysis of DTI Images: A Pattern Recognition Based Assessment ............... 78  
*Gloria Díaz, Gonzalo Pajares, Eduardo Romero,  
Juan Alvarez-Linera, Eva López,  
Juan Antonio Hernández-Tamames, and Norberto Malpica*
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Trial Classification of EEG and Peripheral Physiological Signals for Recognition of Emotions Induced by Music Videos</td>
<td>89</td>
</tr>
<tr>
<td>Sander Koelstra, Ashkan Yazdani, Mohammad Soleymani, Christian Mühl, Jong-Seok Lee, Anton Nijholt, Thierry Pun, Touradj Ebrahimi, and Ioannis Patras</td>
<td></td>
</tr>
<tr>
<td>Brain Signal Recognition and Conversion towards Symbiosis with Ambulatory Humanoids</td>
<td>101</td>
</tr>
<tr>
<td>Yasuo Matsuyama, Keita Noguchi, Takashi Hatakeyama, Nimiko Ochiai, and Tatsuro Hori</td>
<td></td>
</tr>
<tr>
<td>Feature Rating by Random Subspaces for Functional Brain Mapping</td>
<td>112</td>
</tr>
<tr>
<td>Diego Sona and Paolo Avesani</td>
<td></td>
</tr>
<tr>
<td>Recurrence Plots for Identifying Memory Components in Single-Trial EEGs</td>
<td>124</td>
</tr>
<tr>
<td>Nasibeh Talebi and Ali Motie Nasrabadi</td>
<td></td>
</tr>
<tr>
<td>Comparing EEG/ERP-Like and fMRI-Like Techniques for Reading Machine Thoughts</td>
<td>133</td>
</tr>
<tr>
<td>Fabio Massimo Zanzotto and Danilo Croce</td>
<td></td>
</tr>
<tr>
<td>Improving Individual Identification in Security Check with an EEG Based Biometric Solution</td>
<td>145</td>
</tr>
<tr>
<td>Qinglin Zhao, Hong Peng, Bin Hu, Quanying Liu, Li Liu, YanBing Qi, and Lanlan Li</td>
<td></td>
</tr>
</tbody>
</table>

### Neuronal Modeling and Brain Modeling

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Segmentation of 3D Brain Structures Using the Bayesian Generalized Fast Marching Method</td>
<td>156</td>
</tr>
<tr>
<td>Mohamed Baghdadi, Nacéra Benamrane, and Lakhdar Sai</td>
<td></td>
</tr>
<tr>
<td>Domain-Specific Modeling as a Pragmatic Approach to Neuronal Model Descriptions</td>
<td>168</td>
</tr>
<tr>
<td>Ralf Ansorg and Lars Schwabe</td>
<td></td>
</tr>
<tr>
<td>Guessing What’s on Your Mind: Using the N400 in Brain Computer Interfaces</td>
<td>180</td>
</tr>
<tr>
<td>Marijn van Vliet, Christian Mühl, Boris Reuderink, and Mannes Poel</td>
<td></td>
</tr>
<tr>
<td>A Brain Data Integration Model Based on Multiple Ontology and Semantic Similarity</td>
<td>192</td>
</tr>
<tr>
<td>Li Xue, Yun Xiong, and Yangyong Zhu</td>
<td></td>
</tr>
</tbody>
</table>
Perception and Information Processing

How Does Repetition of Signals Increase Precision of Numerical Judgment? ...................................................... 200
   Eike B. Kroll, Jörg Rieger, and Bodo Vogt

Sparse Regression Models of Pain Perception ........................ 212
   Irina Rish, Guillermo A. Cecchi, Marwan N. Baliki, and A. Vania Apkarian

A Study of Mozart Effect on Arousal, Mood, and Attentional Blink .... 224
   Chen Xie, Lun Zhao, Duoqian Miao, Deng Wang, Zhihua Wei, and Hongyun Zhang

Learning

Attentional Disengage from Test-Related Pictures in Test-Anxious Students: Evidence from Event-Related Potentials. ........................ 232
   Rui Chen and Renlai Zhou

Concept Learning in Text Comprehension ........................................ 240
   Manas Hardas and Javed Khan

A Qualitative Approach of Learning in Parkinson’s Disease ............ 252
   Delphine Penny-Leguy and Josiane Caron-Pargue

Cognition-Inspired Applications

Modelling Caregiving Interactions during Stress ........................ 263
   Azizi Ab Aziz, Jan Treur, and C. Natalie van der Wal

Computational Modeling and Analysis of Therapeutical Interventions for Depression ........................................ 274
   Fiemke Both, Mark Hoogendoorn, Michel C.A. Klein, and Jan Treur

A Time Series Based Method for Analyzing and Predicting Personalized Medical Data ........................................ 288
   Qinwin Vivian Hu, Xiangji Jimmy Huang, William Melek, and C. Joseph Kurian

Language Analytics for Assessing Brain Health: Cognitive Impairment, Depression and Pre-symptomatic Alzheimer’s Disease ............ 299
   William L. Jarrold, Bart Peintner, Eric Yeh, Ruth Krasnow, Harold S. Javitz, and Gary E. Swan

The Effect of Sequence Complexity on the Construction of Protein-Protein Interaction Networks ........................................ 308
   Mehdi Kargar and Aijun An
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Fusion and Feature Selection for Alzheimer’s Diagnosis</td>
<td>320</td>
</tr>
<tr>
<td>Blake Lemoine, Sara Rayburn, and Ryan Benton</td>
<td></td>
</tr>
<tr>
<td>A Cognitive Architecture Based on Neuroscience for the Control of</td>
<td>328</td>
</tr>
<tr>
<td>Virtual 3D Human Creatures</td>
<td></td>
</tr>
<tr>
<td>Felipe Rodríguez, Francisco Galvan, Félix Ramos, Erick Castellanos,</td>
<td></td>
</tr>
<tr>
<td>Gregorio García, and Pablo Covarrubias</td>
<td></td>
</tr>
<tr>
<td>Towards Inexpensive BCI Control for Wheelchair Navigation in the</td>
<td>336</td>
</tr>
<tr>
<td>Enabled Environment – A Hardware Survey</td>
<td></td>
</tr>
<tr>
<td>Kenyon Stamps and Yskandar Hamam</td>
<td></td>
</tr>
<tr>
<td>Expression Recognition Methods Based on Feature Fusion</td>
<td>346</td>
</tr>
<tr>
<td>Chang Su, Jiefang Deng, Yong Yang, and Guoyin Wang</td>
<td></td>
</tr>
<tr>
<td>Investigation on Human Characteristics of Japanese Katakana</td>
<td>357</td>
</tr>
<tr>
<td>Recognition by Active Touch</td>
<td></td>
</tr>
<tr>
<td>Suguru Yokotani, Jiajia Yang, and Jinglong Wu</td>
<td></td>
</tr>
<tr>
<td>WICI Perspectives on Brain Informatics</td>
<td></td>
</tr>
<tr>
<td>Towards Systematic Human Brain Data Management Using a Data-Brain</td>
<td>365</td>
</tr>
<tr>
<td>Based GLS-BI System</td>
<td></td>
</tr>
<tr>
<td>Jianhui Chen, Ning Zhong, and Runhe Huang</td>
<td></td>
</tr>
<tr>
<td>The Role of the Parahippocampal Cortex in Memory Encoding and</td>
<td>377</td>
</tr>
<tr>
<td>Retrieval: An fMRI Study</td>
<td></td>
</tr>
<tr>
<td>Mi Li, Shengfu Lu, Jiaojiao Li, and Ning Zhong</td>
<td></td>
</tr>
<tr>
<td>Brain Activation and Deactivation in Human Inductive Reasoning: An</td>
<td>387</td>
</tr>
<tr>
<td>fMRI Study</td>
<td></td>
</tr>
<tr>
<td>Peipeng Liang, Yang Mei, Xiuqin Jia, Yanhui Yang, Shengfu Lu, Ning</td>
<td></td>
</tr>
<tr>
<td>Zhong, and Kuncheng Li</td>
<td></td>
</tr>
<tr>
<td>Clustering of fMRI Data Using Affinity Propagation</td>
<td>399</td>
</tr>
<tr>
<td>Dazhong Liu, Wanxuan Lu, and Ning Zhong</td>
<td></td>
</tr>
<tr>
<td>Interaction between Visual Attention and Goal Control for Speeding</td>
<td>407</td>
</tr>
<tr>
<td>Up Human Heuristic Search</td>
<td></td>
</tr>
<tr>
<td>Rifeng Wang, Jie Xiang, and Ning Zhong</td>
<td></td>
</tr>
<tr>
<td>The Role of Posterior Parietal Cortex in Problem Representation</td>
<td>417</td>
</tr>
<tr>
<td>Jie Xiang, Yulin Qin, Junjie Chen, Haiyan Zhou, Kuncheng Li, and</td>
<td></td>
</tr>
<tr>
<td>Ning Zhong</td>
<td></td>
</tr>
<tr>
<td>Basic Level Advantage and Its Switching during Information Retrieval:</td>
<td>427</td>
</tr>
<tr>
<td>An fMRI Study</td>
<td></td>
</tr>
<tr>
<td>Haiyan Zhou, Jieyu Liu, Wei Jing, Yulin Qin, Shengfu Lu, Yiyu Yao,</td>
<td></td>
</tr>
<tr>
<td>Ning Zhong</td>
<td></td>
</tr>
<tr>
<td>Author Index</td>
<td>437</td>
</tr>
</tbody>
</table>