Preface

We are pleased to present the proceedings of the 10th Workshop on Algorithms in Bioinformatics (WABI 2010) which took place in Liverpool, UK, September 6–8, 2010. The WABI 2010 workshop was part of the four ALGO 2010 conference meetings, which, in addition to WABI, included ESA, ATMOS, and WAOA. WABI 2010 was hosted by the University of Liverpool Department of Computer Science, and sponsored by the European Association for Theoretical Computer Science (EATCS) and the International Society for Computational Biology (ISCB). See http://algo2010.csc.liv.ac.uk/wabi/ for more details.

The Workshop in Algorithms in Bioinformatics highlights research in algorithmic work for bioinformatics, computational biology and systems biology. The emphasis is mainly on discrete algorithms and machine-learning methods that address important problems in molecular biology, that are founded on sound models, that are computationally efficient, and that have been implemented and tested in simulations and on real datasets. The goal is to present recent research results, including significant work-in-progress, and to identify and explore directions of future research.

Original research papers (including significant work-in-progress) or state-of-the-art surveys were solicited for WABI 2010 in all aspects of algorithms in bioinformatics, computational biology and systems biology. In response to our call, we received 83 submissions for papers and 30 were accepted. In addition, WABI 2010 hosted distinguished lectures by Eran Halperin, of Tel Aviv University and ICSI, Berkeley, and, together with ESA, Paolo Ferragina of University of Pisa. We would like to sincerely thank the authors of all submitted papers and the conference participants. We also thank the Program Committee and their sub-referees for their hard work in reviewing and selecting papers for the workshop.

We would especially like to thank Bernard Moret and Tandy Warnow for all of their advice and support in carrying out the role of being Co-chairs.

Thanks once again to all who participated in making WABI’s 10th anniversary such a success. For us it has been an exciting and rewarding experience.

June 2010

Vincent Moulton
Mona Singh
Organization

Program Committee

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tatsuya Akutsu</td>
<td>Kyoto University, Japan</td>
</tr>
<tr>
<td>Bonnie Berger</td>
<td>MIT, USA</td>
</tr>
<tr>
<td>Tanya Berger-Wolf</td>
<td>University of Illinois, USA</td>
</tr>
<tr>
<td>Mathieu Blanchette</td>
<td>McGill University, Canada</td>
</tr>
<tr>
<td>Sebastian Böcker</td>
<td>University of Jena, Germany</td>
</tr>
<tr>
<td>Magnus Bordewich</td>
<td>University of Durham, UK</td>
</tr>
<tr>
<td>Mike Brudno</td>
<td>University of Toronto, Canada</td>
</tr>
<tr>
<td>Philipp Bucher</td>
<td>EPFL, Switzerland</td>
</tr>
<tr>
<td>Benny Chor</td>
<td>Tel Aviv University, Israel</td>
</tr>
<tr>
<td>Anne Condon</td>
<td>University of British Columbia, Canada</td>
</tr>
<tr>
<td>Lenore Cowen</td>
<td>Tufts University, USA</td>
</tr>
<tr>
<td>Keith Crandall</td>
<td>Brigham Young University, USA</td>
</tr>
<tr>
<td>Bhaskar Das Gupta</td>
<td>University of Illinois, USA</td>
</tr>
<tr>
<td>Nadia El-Mabrouk</td>
<td>University of Montreal, Canada</td>
</tr>
<tr>
<td>Liliana Florea</td>
<td>University of Maryland, USA</td>
</tr>
<tr>
<td>Olivier Gascuel</td>
<td>University of Montpellier, France</td>
</tr>
<tr>
<td>Barbara Holland</td>
<td>Massey University, New Zealand</td>
</tr>
<tr>
<td>Katharina Huber</td>
<td>University of East Anglia, UK</td>
</tr>
<tr>
<td>Daniel Huson</td>
<td>University of Tuebingen, Germany</td>
</tr>
<tr>
<td>Lydia Kavraki</td>
<td>Rice University, USA</td>
</tr>
<tr>
<td>Junhyong Kim</td>
<td>University Penn, USA</td>
</tr>
<tr>
<td>Carl Kingsford</td>
<td>University of Maryland, USA</td>
</tr>
<tr>
<td>Mehmet Koyuturk</td>
<td>Case Western, USA</td>
</tr>
<tr>
<td>Jens Lagergren</td>
<td>KTH, Sweden</td>
</tr>
<tr>
<td>Chris Langmead</td>
<td>CMU, USA</td>
</tr>
<tr>
<td>Ryan Lilien</td>
<td>University of Toronto, Canada</td>
</tr>
<tr>
<td>Ion Mandiou</td>
<td>University of Connecticut, USA</td>
</tr>
<tr>
<td>Joao Meidanis</td>
<td>Campinas University, Brazil</td>
</tr>
<tr>
<td>Satoru Miyano</td>
<td>Tokyo University, Japan</td>
</tr>
<tr>
<td>Bernard M.E. Moret</td>
<td>Swiss Federal Institute of Technology, Switzerland</td>
</tr>
<tr>
<td>Burkhard Morgenstern</td>
<td>University of Göttingen, Germany</td>
</tr>
<tr>
<td>Vincent Moulton</td>
<td>University of East Anglia, UK, Co-chair</td>
</tr>
<tr>
<td>Gene W. Myers</td>
<td>Janelia Farms, USA</td>
</tr>
<tr>
<td>Mihai Pop</td>
<td>University of Maryland, USA</td>
</tr>
<tr>
<td>Teresa Przytycka</td>
<td>NIH, USA</td>
</tr>
<tr>
<td>Cenk Sahinalp</td>
<td>Simon Fraser University, USA</td>
</tr>
<tr>
<td>David Sankoff</td>
<td>University of Montréal, Canada</td>
</tr>
</tbody>
</table>
Russell Schwartz 	CMU, USA
Joao Setubal 	Virginia Tech., USA
Mona Singh 	Princeton University, USA, Co-chair
Jens Stoye 	University of Bielefeld, Germany
Glenn Tesler 	UCSD, USA
Olga Vitek
Purdue University, USA
Lusheng Wang 	City University Hong Kong, Hong Kong
Tandy Warnow
University of Texas Austin, USA
Chris Workman
Technical University of Denmark, Denmark
Louxin Zhang
National University of Singapore, Singapore
Table of Contents

Biomolecular Structure: RNA, Protein and Molecular Comparison

- **A Worst-Case and Practical Speedup for the RNA Co-folding Problem Using the Four-Russians Idea** .. 1
 Yelena Frid and Dan Gusfield

- **Sparse Estimation for Structural Variability** 13
 Raghavendra Hosur, Rohit Singh, and Bonnie Berger

- **Data Structures for Accelerating Tanimoto Queries on Real Valued Vectors** .. 28
 Thomas G. Kristensen and Christian N.S. Pedersen

- **Sparsification of RNA Structure Prediction Including Pseudoknots** 40
 Mathias Möhl, Raheleh Salari, Sebastian Will, Rolf Backofen, and S. Cenk Sahinalp

- **Prediction of RNA Secondary Structure Including Kissing Hairpin Motifs** .. 52
 Corinna Theis, Stefan Janssen, and Robert Giegerich

- **Reducing the Worst Case Running Times of a Family of RNA and CFG Problems, Using Valiant’s Approach** 65
 Shay Zakov, Dekel Tsur, and Michal Ziv-Ukelson

Comparative Genomics

- **Reconstruction of Ancestral Genome Subject to Whole Genome Duplication, Speciation, Rearrangement and Loss** 78
 Denis Bertrand, Yves Gagnon, Mathieu Blanchette, and Nadia El-Mabrouk

- **Genomic Distance with DCJ and Indels** 90
 Marília D.V. Braga, Eyla Willing, and Jens Stoye

- **Listing All Sorting Reversals in Quadratic Time** 102
 Krister M. Swenson, Ghada Badr, and David Sankoff

Haplotype and Genotype Analysis

- **Discovering Kinship through Small Subsets** 111
 Daniel G. Brown and Tanya Berger-Wolf
Table of Contents

Fixed-Parameter Algorithm for Haplotype Inferences on General Pedigrees with Small Number of Sites ... 124
Duong D. Doan and Patricia A. Evans

Haplotypes versus Genotypes on Pedigrees 136
Bonnie Kirkpatrick

Haplotype Inference on Pedigrees with Recombinations and Mutations ... 148
Yuri Pirola, Paola Bonizzoni, and Tao Jiang

High-throughput Data Analysis: Next Generation Sequencing and Flow Cytometry

Identifying Rare Cell Populations in Comparative Flow Cytometry 162
Ariful Azad, Johannes Langguth, Youhan Fang, Alan Qi, and Alex Pothen

Fast Mapping and Precise Alignment of AB SOLiD Color Reads to Reference DNA .. 176
Miklós Csúrós, Szilveszter Juhas, and Attila Bérces

Design of an Efficient Out-of-Core Read Alignment Algorithm 189
Arun S. Konagurthu, Lloyd Allison, Thomas Conway, Bryan Beresford-Smith, and Justin Zobel

Estimation of Alternative Splicing Isoform Frequencies from RNA-Seq Data .. 202
Marius Nicolae, Serghei Mangul, Ion Mândoiu, and Alex Zelikovsky

Networks

Improved Orientations of Physical Networks 215
Iftah Gamzu, Danny Segev, and Roded Sharan

Enumerating Chemical Organisations in Consistent Metabolic Networks: Complexity and Algorithms .. 226
Paulo Vieira Milreu, Vicente Acuña, Etienne Birmelé, Pierluigi Crescenzi, Alberto Marchetti-Spaccamela, Marie-France Sagot, Leen Stougie, and Vincent Lacroix

Efficient Subgraph Frequency Estimation with G-Tries 238
Pedro Ribeiro and Fernando Silva
Phylogenetics

Accuracy Guarantees for Phylogeny Reconstruction Algorithms Based on Balanced Minimum Evolution .. 250
Magnus Bordewich and Radu Mihaescu

The Complexity of Inferring a Minimally Resolved Phylogenetic Supertree .. 262
Jesper Jansson, Richard S. Lemence, and Andrzej Lingas

Reducing Multi-state to Binary Perfect Phylogeny with Applications to Missing, Removable, Inserted, and Deleted Data 274
Kristian Stevens and Dan Gusfield

An Experimental Study of Quartets MaxCut and Other Supertree Methods .. 288
M. Shel Swenson, Rahul Suri, C. Randal Linder, and Tandy Warnow

An Efficient Method for DNA-Based Species Assignment via Gene Tree and Species Tree Reconciliation .. 300
Louxin Zhang and Yun Cui

Sequences, Strings and Motifs

Effective Algorithms for Fusion Gene Detection 312
Dan He and Eleazar Eskin

Swiftly Computing Center Strings ... 325
Franziska Hufsky, Léon Kuchenbecker, Katharina Jahn, Jens Stoye, and Sebastian Böcker

Speeding Up Exact Motif Discovery by Bounding the Expected Clump Size .. 337
Tobias Marschall and Sven Rahmann

Pair HMM Based Gap Statistics for Re-evaluation of Indels in Alignments with Affine Gap Penalties .. 350
Alexander Schönhuth, Raheleh Salari, and S. Cenk Sahinalp

Quantifying the Strength of Natural Selection of a Motif Sequence 362
Chen-Hsiang Yeang

Author Index

.. 375