Part I

Differential Calculus on Gaussian Probability Spaces

In the elementary theory of \mathbb{R}^n -valued random variables, operations on the subclass of random variables having a C^1 -density relative to Lebesgue measure are often realized through computations of ordinary differential calculus: for instance, the determination of conditional laws by computing differential forms, the realization of a change of variables by computing Jacobians. Our purpose is to extend this methodology to more general probability spaces.

The Lebesgue measure of \mathbb{R}^n can be characterized by its invariance under the group of translations. Given a probability space Ω , the quasi-automorphism group will be a "natural" group of transformations of Ω leaving quasi-invariant the probability measure; this notion is quite general; it will be developed in this book in the context of a Gaussian probability space, which means an abstract probability space Ω on which we have a Hilbert space \mathcal{H} of Gaussian random variables. The additive group of \mathcal{H} will define the quasi-automorphism group of Ω . Any unitary isomorphism of \mathcal{H} will then generate an automorphism of the Gaussian probability space structure of Ω . The realization of this unitary invariance as a fact built into the construction of Ω itself is done in Chapter I.

The quasi-automorphism group \mathcal{H} operates on a suitable algebra of random variables. The infinitesimal action of \mathcal{H} will lead to the notion of \mathcal{H} -Sobolev spaces on Ω . Chapter II will be devoted to the study of the algebra of smooth random variables which are the random variables belonging to all those Sobolev spaces.

The Jacobian of an \mathbb{R}^d -valued smooth random variable is defined in Chapter III; an appropriate lower bound for this Jacobian will imply that the corresponding law has a C^{∞} -density relative to Lebesgue measure. This theorem will result from an interplay between classical harmonic analysis for Sobolev spaces on \mathbb{R}^d and *elliptic estimates* established in Chapter II for Sobolev spaces on Ω . This interplay will be realized by lifting differential forms by the inverse image and pushing down by conditional expectations.