Parallel Processing and Applied Mathematics

8th International Conference, PPAM 2009
Wroclaw, Poland, September 13-16, 2009
Revised Selected Papers, Part II
Preface

We are pleased to present the proceedings of the 8th International Conference on Parallel Processing and Applied Mathematics – PPAM 2009, which was held in Wroclaw, Poland, September 13–16, 2009. It was organized by the Department of Computer and Information Sciences of the Czestochowa University of Technology, with the help of the Wroclaw University of Technology, Faculty of Computer Science and Management. The main organizer was Roman Wyrzykowski.

PPAM is a biennial conference. Seven previous events have been held in different places in Poland since 1994. The proceedings of the last four conferences have been published by Springer in the Lecture Notes in Computer Science series (Nałęczów, 2001, vol.2328; Częstochowa, 2003, vol.3019; Poznań, 2005, vol.3911; Gdańsk, 2007, vol. 4967).

The PPAM conferences have become an international forum for exchanging ideas between researchers involved in parallel and distributed computing, including theory and applications, as well as applied and computational mathematics. The focus of PPAM 2009 was on models, algorithms, and software tools which facilitate efficient and convenient utilization of modern parallel and distributed computing architectures, as well as on large-scale applications.

This meeting gathered more than 210 participants from 32 countries. A strict refereeing process resulted in the acceptance of 129 contributed presentations, while approximately 46% of the submissions were rejected. Regular tracks of the conference covered such important fields of parallel/distributed/grid computing and applied mathematics as:

- Parallel/distributed architectures and mobile computing
- Numerical algorithms and parallel numerics
- Parallel and distributed non-numerical algorithms
- Tools and environments for parallel/distributed/grid computing
- Applications of parallel/distributed computing
- Applied mathematics and neural networks

Plenary and Invited Speakers

The plenary and invited talks were presented by:

- Srinivas Aluru from the Iowa State University (USA)
- Dominik Behr from AMD (USA)
- Ewa Deelman from the University of Southern California (USA)
- Jack Dongarra from the University of Tennessee and Oak Ridge National Laboratory (USA)
- Iain Duff from the Rutherford Appleton Laboratory (UK)
- Anne C. Elster from NTNU, Trondheim (Norway)
Wolfgang Gentzsch from the DEISA Project
Michael Gschwind from the IBM T.J. Watson Research Center (USA)
Fred Gustavson from the IBM T.J. Watson Research Center (USA)
Simon Holland from Intel (UK)
Vladik Kreinovich from the University of Texas at El Paso (USA)
Magnus Peterson from the Synective Labs (Sweden)
Armin Seyfried from the Juelich Supercomputing Centre (Germany)
Boleslaw Szymański from the Rensselaer Polytechnic Institute (USA)
Jerzy Waśniewski from the Technical University of Denmark (Denmark)

Workshops and Minisymposia

Important and integral parts of the PPAM 2009 conference were the workshops:

– Minisymposium on GPU Computing organized by José R. Herrero from the Universitat Politecnica de Catalunya (Spain), Enrique S. Quintana-Ortí from the Universitat Jaume I (Spain), and Robert Strzodka from the Max-Planck-Institut für Informatik (Germany)
– The Second Minisymposium on Cell/B.E. Technologies organized by Roman Wyrzykowski from the Czestochowa University of Technology (Poland), and David A. Bader from the Georgia Institute of Technology (USA)
– Workshop on Memory Issues on Multi- and Manycore Platforms organized by Michael Bader and Carsten Trinitis from the TU München (Germany)
– Workshop on Novel Data Formats and Algorithms for High-Performance Computing organized by Fred Gustavson from the IBM T.J. Watson Research Center (USA), and Jerzy Waśniewski from the Technical University of Denmark (Denmark)
– Workshop on Scheduling for Parallel Computing - SPC 2009 organized by Maciej Drozdowski from the Poznań University of Technology (Poland)
– The Third Workshop on Language-Based Parallel Programming Models - WLPP 2009 organized by Ami Marowka from the Shenkar College of Engineering and Design in Ramat-Gan (Israel)
– The Second Workshop on Performance Evaluation of Parallel Applications on Large-Scale Systems organized by Jan Kwiatkowski, Dariusz Konieczny and Marcin Pawlik from the Wrocław University of Technology (Poland)
– The 4th Grid Application and Middleware Workshop - GAMW 2009 organized by Ewa Deelman from the University of Southern California (USA), and Norbert Meyer from the Poznań Supercomputing and Networking Center (Poland)
– The 4th Workshop on Large Scale Computations on Grids - LaSCoG 2009 organized by Marcin Paprzycki from IBS PAN and SWPS in Warsaw (Poland), and Dana Petcu from the Western University of Timisoara (Romania)
– Workshop on Parallel Computational Biology - PBC 2009 organized by David A. Bader from the Georgia Institute of Technology in Atlanta (USA), Denis Trystram from ID-IMAG in Grenoble (France), Alexandros Stamatakis from the TU München (Germany), and Jarosław Zola from the Iowa State University (USA)
– Minisymposium on Applications of Parallel Computations in Industry and Engineering organized by Raimondas Čiegis from the Vilnius Gediminas Technical University (Lithuania), and Julius Žilinskas from the Institute of Mathematics and Informatics in Vilnius (Lithuania)
– The Second Minisymposium on Interval Analysis organized by Vladik Kreinovich from the University of Texas at El Paso (USA), Paweł Sewastjanow from the Częstochowa University of Technology (Poland), Bartłomiej J. Kubica from the Warsaw University of Technology (Poland), and Jerzy Waśniewski from the Technical University of Denmark (Denmark)
– Workshop on Complex Collective Systems organized by Paweł Topa and Jarosław Was from the AGH University of Science and Technology in Cracow (Poland)

Tutorials

The PPAM 2009 meeting began with four tutorials:

– GPUs, OpenCL and Scientific Computing, by Robert Strzodka from the Max-Planck-Institut für Informatik (Germany), Dominik Behr from AMD (USA), and Dominik Göddeke from the University of Dortmund (Germany)
– FPGA Programming for Scientific Computing, by Magnus Peterson from the Synective Labs (Sweden)
– Programming the Cell Broadband Engine, by Maciej Remiszewski from IBM (Poland), and Maciej Cytowski from the University of Warsaw (Poland)
– New Data Structures Are Necessary and Sufficient for Dense Linear Algebra Factorization Algorithms, by Fred Gustavson from the IBM T.J. Watson Research Center (USA), and Jerzy Waśniewski from the Technical University of Denmark (Denmark)

Best Poster Award

The PPAM Best Poster Award is given to the best poster on display at the PPAM conferences, and was first awarded at PPAM 2009. This award is bestowed by the Program Committee members to the presenting author(s) of the best poster. The selection criteria are based on the scientific content and on the quality of the poster presentation. The PPAM 2009 winner was Tomasz Olas from the Częstochowa University of Technology, who presented the poster “Parallel Adaptive Finite Element Package with Dynamic Load Balancing for 3D Thermomechanical Problems.”

New Topics at PPAM 2009

GPU Computing: The recent advances in the hardware, functionality, and programmability of graphics processors (GPUs) have greatly increased their appeal
as add-on co-processors for general-purpose computing. With the involvement of the largest processor manufacturers and the strong interest from researchers of various disciplines, this approach has moved from a research niche to a forward-looking technique for heterogeneous parallel computing. Scientific and industry researchers are constantly finding new applications for GPUs in a wide variety of areas, including image and video processing, molecular dynamics, seismic simulation, computational biology and chemistry, fluid dynamics, weather forecast, computational finance, and many others.

GPU hardware has evolved over many years from graphics pipelines with many heterogeneous fixed-function components over partially programmable architectures towards a more and more homogeneous general purpose design, although some fixed-function hardware has remained because of its efficiency. The general-purpose computing on GPU (GPGPU) revolution started with programmable shaders; later, NVIDIA Compute Unified Device Architecture (CUDA) and to a smaller extent AMD Brook+ brought GPUs into the mainstream of parallel computing. The great advantage of CUDA is that it defines an abstraction which presents the underlying hardware architecture as a sea of hundreds of fine-grained computational units with synchronization primitives on multiple levels. With OpenCL there is now also a vendor-independent high-level parallel programming language and an API that offers the same type of hardware abstraction.

GPUs are very versatile accelerators because besides the high hardware parallelism they also feature a high bandwidth connection to dedicated device memory. The latency problem of DRAM is tackled via a sophisticated thread scheduling and switching mechanism on-chip that continues the processing of the next thread as soon as the previous stalls on a data read. These characteristics make GPUs suitable for both compute- and data-intensive parallel processing.

The PPAM 2009 conference recognized the great impact of GPUs by including in its scientific program two major related events: a minisymposium on GPU Computing, and a full day tutorial on “GPUs, OpenCL and Scientific Computing.”

The minisymposium received 18 submissions, of which 10 were accepted (55%). The contributions were organized in three sessions. The first group was related to Numerics, and comprised the following papers: “Finite Element Numerical Integration on GPUs,” “Reduction to Condensed Forms for Symmetric Eigenvalue Problems on Multi-core Architectures,” “On Parallelizing the MRRR Algorithm for Data-Parallel Coprocessors,” and “A Fast GPU Implementation for Solving Sparse Ill-Posed Linear Equation Systems.” The second session dealt with Applications. The papers presented were: “Simulations of the Electrical Activity in the Heart with Graphic Processing Units,” “Stream Processing on GPUs Using Distributed Multimedia Middleware,” and “A GPU Approach to the Simulation of Spatio-temporal Dynamics in Ultrasonic Resonators.” Finally, a third session about General GPU Computing included presentations of three papers: “Fast In-Place Sorting with CUDA Based on Bitonic Sort,” “Parallel Minimax
Tree Searching on GPU,” and “Modeling and Optimizing the Power Performance of Large Matrices Multiplication on Multi-core and GPU Platform with CUDA.”

The tutorial covered a wide variety of GPU topics and also offered hands-on examples of OpenCL programming that any participant could experiment with on their laptop. The morning sessions discussed the basics of GPU architecture, ready-to-use libraries and OpenCL. The afternoon session went in depth on OpenCL and scientific computing on GPUs. All slides are available at http://gpgpu.org/ppam2009.

Complex Collective Systems: Collective aspects of complex systems are attracting an increasing community of researchers working in different fields and dealing with theoretical aspects as well as practical applications. In particular, analyzing local interactions and simple rules makes it possible to model complex phenomena efficiently. Collective systems approaches show great promise in establishing scientific methods that could successfully be applied across a variety of application fields. Many studies in complex collective systems science follow either a cellular automata (CA) method or an agent-based approach. Hybridization between these two complementary approaches gives a promising perspective. The majority of work presented during the workshop on complex collective systems represents the hybrid approach.

We can distinguish four groups of subjects presented during the workshop.

The first group was modeling of pedestrian dynamics: Armin Seyfried from the Juelich Supercomputing Center presented actual challenges in pedestrian dynamics modeling. Another important issue of crowd modeling was also taken into account during the workshop: modeling of stop-and-go waves (Andrea Portz and Armin Seyfried), calibration of pedestrian stream models (Wolfram Klein, Gerta Körster and Andreas Meister), parallel design patterns in a pedestrian simulation (Sarah Clayton), floor fields models based on CA (Ekaterina Kirik, Tat’yana Yurgel’yyan and Dmitriy Krouglov), and discrete potential field construction (Konrad Kulakowski and Jarosław Wąs).

The second group dealt with models of car traffic: a fuzzy cellular model of traffic (Bartłomiej Płaczek), and an adaptive time gap car-following model (Antoine Tordeux and Pascal Bouvry).

The third group included work connected with cryptography based on cellular automata: weakness analysis of a key stream generator (Frederic Pinel and Pascal Bouvry), and properties of safe CA-based S-Boxes (Mirosław Szaban and Franciszek Seredynski).

The fourth group dealt with various applications in a field of complex collective systems: frustration and collectivity in spatial networks (Anna Mańka-Krasoń, Krzysztof Kulakowski), lava flow hazard modeling (Maria Vittoria Avolio, Donato D’Ambrosio, Valeria Lupiano, Rocco Rongo and William Spataro), FPGA realization of a CA-based epidemic processor (Pavlos Progias, Emmanouela Vardaki and Georgios Sirakoulis)
Acknowledgements

The organizers are indebted to the PPAM 2009 sponsors, whose support was vital to the success of the conference. The main sponsor was the Intel Corporation. The other sponsors were: Hewlett-Packard Company, Microsoft Corporation, IBM Corporation, Action S.A., and AMD. We thank to all members of the International Program Committee and additional reviewers for their diligent work in refereeing the submitted papers. Finally, we thank all of the local organizers from the Częstochowa University of Technology and Wrocław University of Technology who helped us to run the event very smoothly. We are especially indebted to Grażyna Kołakowska, Urszula Kroczyńska, Łukasz Kuczyński, and Marcin Wozniak from the Częstochowa University of Technology; and to Jerzy Światek, and Jan Kwiatkowski from the Wrocław University of Technology.

PPAM 2011

We hope that this volume will be useful to you. We would like everyone who reads it to feel invited to the next conference, PPAM 2011, which will be held September 11–14, 2011, in Toruń, a city in northern Poland where the great astronomer Nicolaus Copernicus was born.

February 2010

Roman Wyrzykowski
Jack Dongarra
Konrad Karczewski
Jerzy Waśniewski
Organization

Program Committee

Jan Węglarz
Poznań University of Technology, Poland
Honorary Chair

Roman Wyrzykowski
Częstochowa University of Technology, Poland
Chair

Bolesław Szymański
Rensselaer Polytechnic Institute, USA
Vice-Chair

Peter Arbenz
ETH, Zurich, Switzerland

Piotr Bała
N. Copernicus University, Poland

David A. Bader
Georgia Institute of Technology, USA

Michael Bader
TU München, Germany

Mark Baker
University of Reading, UK

Radim Blaheta
Institute of Geonics, Czech Academy of Sciences

Jacek Błaszewicz
Poznań University of Technology, Poland

Leszek Borzemski
Wrocław University of Technology, Poland

Pascal Bouvry
University of Luxembourg

Tadeusz Burczyński
Silesia University of Technology, Poland

Jerzy Brzeziński
Poznań University of Technology, Poland

Marian Bubak
Institute of Computer Science, AGH, Poland

Raimondas Čiegis
Vilnius Gediminas Tech. University, Lithuania

Andrea Clematis
IMATI-CNR, Italy

Zbigniew Czech
Silesia University of Technology, Poland

Jack Dongarra
University of Tennessee and ORNL, USA

Maciej Drozdowski
Poznań University of Technology, Poland

Erik Elmroth
Umea University, Sweden

Anne C. Elster NTNU, Trondheim, Norway

Mariusz Flasiński
Jagiellonian University, Poland

Maria Ganzha
IBS PAN, Warsaw, Poland

Jacek Gondzio
University of Edinburgh, Scotland, UK

Andrzej Gościński
Deakin University, Australia

Laura Grigori
INRIA, France

Frederic Guinand
Université du Havre, France

José R. Herrero
Universitat Politecnica de Catalunya, Barcelona, Spain

Ladislav Hluchy
Slovak Academy of Sciences, Bratislava

Ondrej Jakl
Institute of Geonics, Czech Academy of Sciences

Emmanuel Jeannot
INRIA, France

Grzegorz Kamieniarz
A. Mickiewicz University, Poznań, Poland

Alexey Kalinov
Cadence Design System, Russia

Ayse Kiper
Middle East Technical University, Turkey
Jacek Kitowski
Institute of Computer Science, AGH, Poland

Jozef Korbicz
University of Zielona Góra, Poland

Stanislaw Kozielski
Silesia University of Technology, Poland

Dieter Kranzlmüller
Ludwig Maximillian University, Munich,
and Leibniz Supercomputing Centre, Germany

Henryk Krawczyk
Gdańsk University of Technology, Poland

Piotr Krzyżanowski
University of Warsaw, Poland

Jan Kwaitkowski
Wrocław University of Technology, Poland

Giulliano Laccetti
University of Naples, Italy

Marco Lapegna
University of Naples, Italy

Alexey Lastovetsky
University College Dublin, Ireland

Vyacheslav I. Maksimov
Ural Branch, Russian Academy of Sciences

Victor E. Malyshkin
Siberian Branch, Russian Academy of Sciences

Tomas Margalef
Universitat Autonoma de Barcelona, Spain

Ami Marowka
Shenkar College of Engineering and Design, Israel

Norbert Meyer
PSNC, Poznań, Poland

Jarek Nabrzyski
University of Notre Dame, USA

Marcin Paprzycki
IBS PAN and SWPS, Warsaw, Poland

Dana Petcu
Western University of Timisoara, Romania

Enrique S. Quintana-Ortí
Universitat Jaime I, Spain

Yves Robert
Ecole Normale Superieure de Lyon, France

Jacek Rokicki
Warsaw University of Technology, Poland

Leszek Rutkowski
Częstochowa University of Technology, Poland

Franciszek Seredyński
Institute of Information Technology, Warsaw, Poland

Robert Schaefer
Institute of Computer Science, AGH, Poland

Jurij Silc
Jozef Stefan Institute, Slovenia

Peter M.A. Sloot
University of Amsterdam, The Netherlands

Masha Sosonkina
Ames Laboratory and Iowa State University, USA

Leonel Sousa
Technical University Lisbon, Portugal

Maciej Stroniski
PSNC, Poznań, Poland

Domenico Talia
University of Calabria, Italy

Andrei Tchernykh
CICESE, Ensenada, Mexico

Carsten Trinitis
TU München, Germany

Roman Trubec
Jozef Stefan Institute, Slovenia

Denis Trystram
ID-IMAG, Grenoble, France

Marek Tudruj
Polish Academy of Sciences and Polish-Japanese
Institute of Information Technology, Warsaw, Poland

Pavel Tvrdík
Czech Technical University, Prague

Jens Volkert
Johannes Kepler University, Linz, Austria

Jerzy Waśniewski
Technical University of Denmark

Bogdan Wiszniewski
Gdańsk University of Technology, Poland

Ramin Yahyapour
University of Dortmund, Germany

Jianping Zhu
University of Texas at Arlington, USA
Table of Contents – Part II

Workshop on Scheduling for Parallel Computing (SPC 2009)

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fully Polynomial Time Approximation Schemes for Scheduling Divisible Loads</td>
<td>1</td>
</tr>
<tr>
<td>Joanna Berlińska</td>
<td></td>
</tr>
<tr>
<td>Semi-online Preemptive Scheduling: Study of Special Cases</td>
<td>11</td>
</tr>
<tr>
<td>Tomáš Ebenlendr</td>
<td></td>
</tr>
<tr>
<td>Fast Multi-objective Reschuling of Grid Jobs by Heuristics and Evolution</td>
<td>21</td>
</tr>
<tr>
<td>Wilfried Jakob, Alexander Quinte, Karl-Uwe Stucky, and Wolfgang Süß</td>
<td></td>
</tr>
<tr>
<td>Comparison of Program Task Scheduling Algorithms for Dynamic SMP Clusters with Communication on the Fly</td>
<td>31</td>
</tr>
<tr>
<td>Lukasz Maško, Marek Tdruj, Gregory Mounie, and Denis Trystram</td>
<td></td>
</tr>
<tr>
<td>Study on GEO Metaheuristic for Solving Multiprocessor Scheduling Problem</td>
<td>42</td>
</tr>
<tr>
<td>Piotr Switalski and Franciszek Seredynski</td>
<td></td>
</tr>
<tr>
<td>Online Scheduling of Parallel Jobs on Hypercubes: Maximizing the Throughput</td>
<td>52</td>
</tr>
<tr>
<td>Ondřej Zajíček, Jiří Sgall, and Tomáš Ebenlendr</td>
<td></td>
</tr>
</tbody>
</table>

The Third Workshop on Language-Based Parallel Programming Models (WLPP 2009)

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verification of Causality Requirements in Java Memory Model Is</td>
<td>62</td>
</tr>
<tr>
<td>Undecidable</td>
<td></td>
</tr>
<tr>
<td>Matko Botinčan, Paola Glavan, and Davor Runje</td>
<td></td>
</tr>
<tr>
<td>A Team Object for CoArray Fortran</td>
<td>68</td>
</tr>
<tr>
<td>Robert W. Numrich</td>
<td></td>
</tr>
<tr>
<td>On the Definition of Service Abstractions for Parallel Computing</td>
<td>74</td>
</tr>
<tr>
<td>Hervé Paulino</td>
<td></td>
</tr>
</tbody>
</table>
The Second Workshop on Performance Evaluation of Parallel Applications on Large-Scale Systems

Performance Debugging of Parallel Compression on Multicore Machines ... 82
 Janusz Borkowski

Energy Considerations for Divisible Load Processing 92
 Maciej Drozdowski

Deskilling HPL: Using an Evolutionary Algorithm to Automate Cluster Benchmarking .. 102
 Dominic Dunlop, Sébastien Varrette, and Pascal Bouvy

Monitoring of SLA Parameters within VO for the SOA Paradigm 115
 Włodzimierz Funika, Bartosz Kryza, Renata Slota, Jacek Kitowski,
 Kornel Skalkowski, Jakub Sendor, and Dariusz Krol

A Role-Based Approach to Self-healing in Autonomous Monitoring Systems ... 125
 Włodzimierz Funika and Piotr Pęgiel

Parallel Performance Evaluation of MIC(0) Preconditioning Algorithm for Voxel μFE Simulation ... 135
 Ivan Lirkov, Yavor Vutov, Marcin Paprzycki, and Maria Ganzha

Parallel HAVEGE .. 145
 AlinSuciu, Tudor Carean, Andre Seznec, and Kinga Marton

The Fourth Grid Applications and Middleware Workshop (GAMW 2009)

UNICORE Virtual Organizations System .. 155
 Krzysztof Benedyczak, Marcin Lewandowski,
 Aleksander Nowiński, and Piotr Bala

Application of ADMIRE Data Mining and Integration Technologies in Environmental Scenarios .. 165
 Marek Ciγylan, Ondrej Habala, Viet Tran, Ladislav Hluchy,
 Martin Kremler, and Martin Gera

Performance Based Matchmaking on Grid 174
 Andrea Clematis, Angelo Corana, Daniele D’Agostino,
 Antonella Galizia, and Alfonso Quarati

Replica Management for National Data Storage 184
 Renata Slota, Darin Nikolow, Marcin Kuta, Mariusz Kapanowski,
 Kornel Skalkowski, Marek Pogoda, and Jacek Kitowski
Churn Tolerant Virtual Organization File System for Grids 194
Leif Lindbäck, Vladimir Vlassov, Shahab Mokarizadeh, and
Gabriele Violino

The Fourth Workshop on Large Scale Computations on Grids (LaSCoG 2009)

Quasi-random Approach in the Grid Application SALUTE 204
Emanouil Atanassov, Aneta Karaivanova, and Todor Gyov

Mobile Agents for Management of Native Applications in GRID 214
Rocco Aversa, Beniamino Di Martino, Renato Donini, and
Salvatore Venticinque

Leveraging Complex Event Processing for Grid Monitoring 224
Bartosz Balis, Bartosz Kowalewski, and Marian Bubak

Designing Execution Control in Programs with Global Application
States Monitoring ... 234
Janusz Borkowski and Marek Tadruj

Distributed MIND - A New Processing Model Based on Mobile
Interactive Documents .. 244
Magdalena Godlewska and Bogdan Wiszniewski

A Framework for Observing Dynamics of Agent-Based Computations...
Jaroslaw Kawecki and Maciej Smaloka

HyCube: A DHT Routing System Based on a Hierarchical Hypercube
Geometry ... 260
Artur Olszak

Workshop on Parallel Computational Biology (PBC 2009)

Accuracy and Performance of Single versus Double Precision
Arithmetics for Maximum Likelihood Phylogeny Reconstruction 270
Simon A. Berger and Alexandros Stamatakis

Automated Design of Assemblable, Modular, Synthetic Chromosomes...
Sarah M. Richardson, Brian S. Olson, Jessica S. Dymond,
Randal Burns, Srinivasan Chandrasegaran, Jef D. Boeke,
Amanda Shehu, and Joel S. Bader

GPU Parallelization of Algebraic Dynamic Programming 290
Peter Steffen, Robert Giegerich, and Mathieu Giraud

Parallel Extreme Ray and Pathway Computation 300
Marco Terzer and Jörg Stelling
Minisymposium on Applications of Parallel Computation in Industry and Engineering

Parallelized Transient Elastic Wave Propagation in Orthotropic Structures ... 310
 Peter Arbenz, Jürg Bryner, and Christine Tobler

Parallel Numerical Solver for Modelling of Electromagnetic Properties of Thin Conductive Layers ... 320
 Raimondas Čiegis, Žilvinas Kancleris, and Gediminas Šlekas

Numerical Health Check of Industrial Simulation Codes from HPC Environments to New Hardware Technologies 330
 Christophe Denis

Application of Parallel Technologies to Modeling Lithosphere Dynamics and Seismicity ... 340
 Boris Dígas, Lidiya Melnikova, and Valerii Rozenberg

AMG for Linear Systems in Engine Flow Simulations 350
 Maximilian Emans

Parallel Implementation of a Steady State Thermal and Hydraulic Analysis of Pipe Networks in OpenMP ... 360
 Mykhaylo Fedorov

High-Performance Ocean Color Monte Carlo Simulation in the Geo-info Project ... 370
 Tamito Kajiyama, Davide D’Alimonte, José C. Cunha, and Giuseppe Zibordi

EULAG Model for Multiscale Flows – Towards the Petascale Generation of Mesoscale Numerical Weather Prediction 380
 Zbigniew P. Piotrowski, Marcin J. Kurowski, Bogdan Rosa, and Michal Z. Ziemsanski

Parallel Implementation of Particle Tracking and Collision in a Turbulent Flow ... 388
 Bogdan Rosa and Lian-Ping Wang

A Distributed Multilevel Ant-Colony Approach for Finite Element Mesh Decomposition ... 398
 Katerina Tašková, Peter Korošec, and Jurij Šilc

Minisymposium on Interval Analysis

Toward Definition of Systematic Criteria for the Comparison of Verified Solvers for Initial Value Problems 408
 Ekaterina Auer and Andreas Rauh
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuzzy Solution of Interval Nonlinear Equations</td>
<td>418</td>
</tr>
<tr>
<td>Ludmila Dymova</td>
<td></td>
</tr>
<tr>
<td>Solving Systems of Interval Linear Equations with Use of Modified</td>
<td>427</td>
</tr>
<tr>
<td>Interval Division Procedure</td>
<td></td>
</tr>
<tr>
<td>Ludmila Dymova, Mariusz Pilarek, and Roman Wyrzykowski</td>
<td></td>
</tr>
<tr>
<td>Remarks on Algorithms Implemented in Some C++ Libraries for</td>
<td>436</td>
</tr>
<tr>
<td>Floating-Point Conversions and Interval Arithmetic</td>
<td></td>
</tr>
<tr>
<td>Małgorzata A. Jankowska</td>
<td></td>
</tr>
<tr>
<td>An Interval Method for Seeking the Nash Equilibria of Non-Cooperative</td>
<td>446</td>
</tr>
<tr>
<td>Games</td>
<td></td>
</tr>
<tr>
<td>Bartłomiej Jacek Kubica and Adam Woźniak</td>
<td></td>
</tr>
<tr>
<td>From Gauging Accuracy of Quantity Estimates to Gauging Accuracy</td>
<td>456</td>
</tr>
<tr>
<td>and Resolution of Measuring Physical Fields</td>
<td></td>
</tr>
<tr>
<td>Vladik Kreinovich and IrinaPerfilieva</td>
<td></td>
</tr>
<tr>
<td>A New Method for Normalization of Interval Weights</td>
<td>466</td>
</tr>
<tr>
<td>Pavel Sevastjanov, Pavel Bartosiewicz, and Kamil Tkacz</td>
<td></td>
</tr>
<tr>
<td>A Global Optimization Method for Solving Parametric Linear Systems</td>
<td>475</td>
</tr>
<tr>
<td>Whose Input Data Are Rational Functions of Interval Parameters</td>
<td></td>
</tr>
<tr>
<td>Iwona Skalna</td>
<td></td>
</tr>
<tr>
<td>Direct Method for Solving Parametric Interval Linear Systems with</td>
<td>485</td>
</tr>
<tr>
<td>Non-affine Dependencies</td>
<td></td>
</tr>
<tr>
<td>Iwona Skalna</td>
<td></td>
</tr>
<tr>
<td>Workshop on Complex Collective Systems</td>
<td></td>
</tr>
<tr>
<td>Evaluating Lava Flow Hazard at Mount Etna (Italy) by a Cellular</td>
<td>495</td>
</tr>
<tr>
<td>Automata Based Methodology</td>
<td></td>
</tr>
<tr>
<td>*Maria Vittoria Avolio, Donato D’Ambrosio, Valeria Lupiano, Rocco</td>
<td></td>
</tr>
<tr>
<td>Rongo, and William Spataro</td>
<td></td>
</tr>
<tr>
<td>Application of CoSMoS Parallel Design Patterns to a Pedestrian</td>
<td>505</td>
</tr>
<tr>
<td>Simulation</td>
<td></td>
</tr>
<tr>
<td>Sarah Clayton, Neil Urquhard, and Jon Kerridge</td>
<td></td>
</tr>
<tr>
<td>Artificial Intelligence of Virtual People in CA FF Pedestrian</td>
<td>513</td>
</tr>
<tr>
<td>Dynamics</td>
<td></td>
</tr>
<tr>
<td>Ekaterina Kirik, Tat’yan Yurgel’yan, and Dmitriy Krougllov</td>
<td></td>
</tr>
<tr>
<td>Towards the Calibration of Pedestrian Stream Models</td>
<td>521</td>
</tr>
<tr>
<td>Wolfram Klein, Gerta Köster, and Andreas Meister</td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Two Concurrent Algorithms of Discrete Potential Field Construction</td>
<td>529</td>
</tr>
<tr>
<td>Konrad Kulakowski and Jarosław Was</td>
<td></td>
</tr>
<tr>
<td>Frustration and Collectivity in Spatial Networks</td>
<td>539</td>
</tr>
<tr>
<td>Anna Mańka-Krasoń and Krzysztof Kulakowski</td>
<td></td>
</tr>
<tr>
<td>Weakness Analysis of a Key Stream Generator Based on Cellular Automata</td>
<td>547</td>
</tr>
<tr>
<td>Frédéric Pinel and Pascal Bouvry</td>
<td></td>
</tr>
<tr>
<td>Fuzzy Cellular Model for On-line Traffic Simulation</td>
<td>553</td>
</tr>
<tr>
<td>Bartłomiej Placzek</td>
<td></td>
</tr>
<tr>
<td>Modeling Stop-and-Go Waves in Pedestrian Dynamics</td>
<td>561</td>
</tr>
<tr>
<td>Andrea Portz and Armin Seyfried</td>
<td></td>
</tr>
<tr>
<td>FPGA Realization of a Cellular Automata Based Epidemic Processor</td>
<td>569</td>
</tr>
<tr>
<td>Pavlos Progias, Emmanouela Vardaki, and Georgios Ch. Sirakoulis</td>
<td></td>
</tr>
<tr>
<td>Empirical Results for Pedestrian Dynamics at Bottlenecks</td>
<td>575</td>
</tr>
<tr>
<td>Armin Seyfried and Andreas Schadschneider</td>
<td></td>
</tr>
<tr>
<td>Properties of Safe Cellular Automata-Based S-Boxes</td>
<td>585</td>
</tr>
<tr>
<td>Mirosław Szaban and Franciszek Seredyński</td>
<td></td>
</tr>
<tr>
<td>Author Index</td>
<td>593</td>
</tr>
</tbody>
</table>
Parallel/Distributed Architectures and Mobile Computing

Evaluating Performance of New Quad-Core Intel® Xeon® 5500 Family Processors for HPC ... 1
Pawel Gepner, David L. Fraser, and Michal F. Kowalik

Interval Wavelength Assignment in All-Optical Star Networks 11
Robert Janczewski, Anna Małafiejska, and Michal Małafiejski

Graphs Partitioning: An Optimal MIMD Queueless Routing for BPC-Permutations on Hypercubes .. 21
Jean-Pierre Jung and Ibrahima Sakho

Probabilistic Packet Relaying in Wireless Mobile Ad Hoc Networks..... 31
Marcin Seredynski, Tomasz Ignac, and Pascal Bouvry

Numerical Algorithms and Parallel Numerics

On the Performance of a New Parallel Algorithm for Large-Scale Simulations of Nonlinear Partial Differential Equations 41
Juan A. Acebrón, Angel Rodríguez-Rozas, and Renato Spigler

Partial Data Replication as a Strategy for Parallel Computing of the Multilevel Discrete Wavelet Transform 51
Liesner Acevedo, Victor M. Garcia, Antonio M. Vidal, and Pedro Alonso

Dynamic Load Balancing for Adaptive Parallel Flow Problems 61
Stanisław Gepner, Jerzy Majewski, and Jacek Rokicki

A Balancing Domain Decomposition Method for a Discretization of a Plate Problem on Nonmatching Grids 70
Leszek Marcinkowski

Application Specific Processors for the Autoregressive Signal Analysis ... 80
Anatoliy Sergiyenko, Oleg Maslennikow, Piotr Ratusznjak, Natalia Maslennikowa, and Adam Tomas

A Parallel Non-square Tiled Algorithm for Solving a Kind of BVP for Second-Order ODEs .. 87
Przemysław Stpiczyński
XX Table of Contents – Part I

Graph Grammar Based Petri Nets Model of Concurrency for Self-adaptive hp-Finite Element Method with Rectangular Elements . . . 95
 Arkadiusz Szymczak and Maciej Paszyński

Numerical Solution of the Time and Rigidity Dependent Three Dimensional Second Order Partial Differential Equation 105
 Anna Wawrzynczak and Michael V. Alania

Hardware Implementation of the Exponent Based Computational Core for an Exchange-Correlation Potential Matrix Generation 115
 Maciej Wielgosz, Ernest Jamro, and Kazimierz Wiatr

Parallel Implementation of Conjugate Gradient Method on Graphics Processors .. 125
 Marcin Wozniak, Tomasz Olas, and Roman Wyrzykowski

Iterative Solution of Linear and Nonlinear Boundary Problems Using PIES .. 136
 Eugeniusz Zieliński and Agnieszka Boliuc

Parallel and Distributed Non-numerical Algorithms

Implementing a Parallel Simulated Annealing Algorithm 146
 Zbigniew J. Czech, Wojciech Mikanik, and Rafał Skinderowicz

Parallel Computing Scheme for Graph Grammar-Based Syntactic Pattern Recognition .. 156
 Mariusz Flasiński, Janusz Jurek, and Szymon Myśliński

Extended Cascaded Star Schema for Distributed Spatial Data Warehouse .. 166
 Marcin Gorawski

Parallel Longest Increasing Subsequences in Scalable Time and Memory .. 176
 Peter Krusche and Alexander Tiskin

A Scalable Parallel Union-Find Algorithm for Distributed Memory Computers .. 186
 Fredrik Manne and Md. Mostofa Ali Patwary

Tools and Environments for Parallel/Distributed/Grid Computing

Extracting Both Affine and Non-linear Synchronization-Free Slices in Program Loops .. 196
 Włodzimierz Bielecki and Marek Palkowski
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Flexible Checkpoint/Restart Model in Distributed Systems</td>
<td>206</td>
</tr>
<tr>
<td>*Mohamed-Slim Bouguerra, Thierry Gautier, Denis Trystram, and</td>
<td></td>
</tr>
<tr>
<td>Jean-Marc Vincent*</td>
<td></td>
</tr>
<tr>
<td>A Formal Approach to Replica Consistency in Directory Service</td>
<td>216</td>
</tr>
<tr>
<td>Jerzy Brzeziński, Cezary Sobaniec, and Dariusz Wawrzyniak</td>
<td></td>
</tr>
<tr>
<td>Software Security in the Model for Service Oriented Architecture</td>
<td>226</td>
</tr>
<tr>
<td>Quality</td>
<td></td>
</tr>
<tr>
<td>Grzegorz Kolaczk and Adam Wasilewski</td>
<td></td>
</tr>
<tr>
<td>Automatic Program Parallelization for Multicore Processors</td>
<td>236</td>
</tr>
<tr>
<td>Jan Kwiatkowski and Radoslaw Iwaszyn</td>
<td></td>
</tr>
<tr>
<td>Request Distribution in Hybrid Processing Environments</td>
<td>246</td>
</tr>
<tr>
<td>Jan Kwiatkowski, Mariusz Fras, Marcin Pawlik, and Dariusz Konieczny</td>
<td></td>
</tr>
<tr>
<td>Vine Toolkit - Grid-Enabled Portal Solution for Community Driven</td>
<td>256</td>
</tr>
<tr>
<td>Computing Workflows with Meta-Scheduling Capabilities</td>
<td></td>
</tr>
<tr>
<td>*Dawid Szejnfeld, Piotr Domagalski, Piotr Dziubiecki,</td>
<td></td>
</tr>
<tr>
<td>Piotr Kopta, Michal Krynski, Tomasz Kuczyński,</td>
<td></td>
</tr>
<tr>
<td>Krzysztof Kurowski, Bogdan Ludwiczak, Jaroslaw Nabrzyski,</td>
<td></td>
</tr>
<tr>
<td>Tomasz Piontek, Dominik Tarnawczyk, Krzysztof Witkowski, and</td>
<td></td>
</tr>
<tr>
<td>Małgorzata Wolniewicz*</td>
<td></td>
</tr>
<tr>
<td>Applications of Parallel/Distributed Computing</td>
<td></td>
</tr>
<tr>
<td>GEM – A Platform for Advanced Mathematical Geosimulations</td>
<td>266</td>
</tr>
<tr>
<td>Radim Blaheta, Ondřej Jakl, Roman Kohut, and Jiří Starý</td>
<td></td>
</tr>
<tr>
<td>Accelerating the MilkyWay@Home Volunteer Computing Project with</td>
<td>276</td>
</tr>
<tr>
<td>GPUs</td>
<td></td>
</tr>
<tr>
<td>*Travis Desell, Anthony Waters, Malik Magdon-Ismail,</td>
<td></td>
</tr>
<tr>
<td>Bolesław K. Szymanski, Carlos A. Varela, Matthew Newby,</td>
<td></td>
</tr>
<tr>
<td>Heidi Newberg, Andreas Przystawik, and David Anderson*</td>
<td></td>
</tr>
<tr>
<td>Vascular Network Modeling - Improved Parallel Implementation on</td>
<td>289</td>
</tr>
<tr>
<td>Computing Cluster</td>
<td></td>
</tr>
<tr>
<td>Krzysztof Jurczuk, Marek Krętowski, and Johanne Bézy-Wendling</td>
<td></td>
</tr>
<tr>
<td>Parallel Adaptive Finite Element Package with Dynamic Load</td>
<td>299</td>
</tr>
<tr>
<td>Balancing for 3D Thermo-Mechanical Problems</td>
<td></td>
</tr>
<tr>
<td>Tomasz Olas, Robert Leśniak, Roman Wyrzykowski, and Pawel Gepner</td>
<td></td>
</tr>
<tr>
<td>Parallel Implementation of Multidimensional Scaling Algorithm Based</td>
<td>312</td>
</tr>
<tr>
<td>on Particle Dynamics</td>
<td></td>
</tr>
<tr>
<td>Piotr Pawliczek and Witold Dzwienel</td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Particle Model of Tumor Growth and Its Parallel Implementation</td>
<td>322</td>
</tr>
<tr>
<td>Rafal Wcisło and Witold Dzwiel</td>
<td></td>
</tr>
<tr>
<td>Applied Mathematics and Neural Networks</td>
<td></td>
</tr>
<tr>
<td>Modular Neuro-Fuzzy Systems Based on Generalized Parametric Triangular Norms</td>
<td>332</td>
</tr>
<tr>
<td>Marcin Korytkowski and Rafał Scherer</td>
<td></td>
</tr>
<tr>
<td>Application of Stacked Methods to Part-of-Speech Tagging of Polish</td>
<td>340</td>
</tr>
<tr>
<td>Marcin Kuta, Wojciech Wójcik, Michał Wrzeszcz, and Jacek Kitowski</td>
<td></td>
</tr>
<tr>
<td>Computationally Efficient Nonlinear Predictive Control Based on State-Space Neural Models</td>
<td>350</td>
</tr>
<tr>
<td>Maciej Lawryńczuk</td>
<td></td>
</tr>
<tr>
<td>Relational Type-2 Interval Fuzzy Systems</td>
<td>360</td>
</tr>
<tr>
<td>Rafał Scherer and Janusz T. Starczewski</td>
<td></td>
</tr>
<tr>
<td>Properties of Polynomial Bases Used in a Line-Surface Intersection Algorithm</td>
<td>369</td>
</tr>
<tr>
<td>Gun Srijuntongsiri and Stephen A. Vavasis</td>
<td></td>
</tr>
<tr>
<td>Minisymposium on GPU Computing</td>
<td></td>
</tr>
<tr>
<td>A GPU Approach to the Simulation of Spatio–temporal Dynamics in Ultrasonic Resonators</td>
<td>379</td>
</tr>
<tr>
<td>Pedro Alonso–Jordá, Isabel Pérez–Arjona, and Victor J. Sánchez–Morcillo</td>
<td></td>
</tr>
<tr>
<td>Reduction to Condensed Forms for Symmetric Eigenvalue Problems on Multi-core Architectures</td>
<td>387</td>
</tr>
<tr>
<td>Paolo Bientinesi, Francisco D. Igual, Daniel Kressner, and Enrique S. Quintana-Ortí</td>
<td></td>
</tr>
<tr>
<td>On Parallelizing the MRRR Algorithm for Data-Parallel Coprocessors</td>
<td>396</td>
</tr>
<tr>
<td>Christian Lessig and Paolo Bientinesi</td>
<td></td>
</tr>
<tr>
<td>Fast In-Place Sorting with CUDA Based on Bitonic Sort</td>
<td>403</td>
</tr>
<tr>
<td>Hagen Peters, Ole Schulz-Hildebrandt, and Norbert Luttenberger</td>
<td></td>
</tr>
<tr>
<td>Finite Element Numerical Integration on GPUs</td>
<td>411</td>
</tr>
<tr>
<td>Przemysław Płaszewski, Paweł Maciół, and Krzysztof Banaś</td>
<td></td>
</tr>
<tr>
<td>Modeling and Optimizing the Power Performance of Large Matrices</td>
<td>421</td>
</tr>
<tr>
<td>Multiplication on Multi-core and GPU Platform with CUDA</td>
<td></td>
</tr>
<tr>
<td>Da Qi Ren and Reiji Suda</td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Stream Processing on GPUs Using Distributed Multimedia</td>
<td>429</td>
</tr>
<tr>
<td>Michael Replinger and Philipp Slusallek</td>
<td></td>
</tr>
<tr>
<td>Simulations of the Electrical Activity in the Heart with Graphic</td>
<td>439</td>
</tr>
<tr>
<td>Processing Units</td>
<td></td>
</tr>
<tr>
<td>Bernardo M. Rocha, Fernando O. Campos, Gernot Plank, Rodrigo W. dos Santos, Manfred Liebmann, and Gundolf Haase</td>
<td></td>
</tr>
<tr>
<td>Parallel Minimax Tree Searching on GPU</td>
<td>449</td>
</tr>
<tr>
<td>Kamil Rocki and Reiji Suda</td>
<td></td>
</tr>
<tr>
<td>A Fast GPU Implementation for Solving Sparse Ill-Posed Linear Systems</td>
<td>457</td>
</tr>
<tr>
<td>Florian Stock and Andreas Koch</td>
<td></td>
</tr>
<tr>
<td>The Second Minisymposium on Cell/B.E. Technologies</td>
<td></td>
</tr>
<tr>
<td>Monte Carlo Simulations of Spin Glass Systems on the Cell Broadband</td>
<td>467</td>
</tr>
<tr>
<td>Francesco Belletti, Marco Guidetti, Andrea Maiorano, Filippo Mantovani, Sebastiano Fabio Schifano, and Raffaele Tripiccione</td>
<td></td>
</tr>
<tr>
<td>Montgomery Multiplication on the Cell</td>
<td>477</td>
</tr>
<tr>
<td>Joppe W. Bos and Marcelo E. Kaihara</td>
<td></td>
</tr>
<tr>
<td>An Exploration of CUDA and CBEA for Einstein@Home</td>
<td>486</td>
</tr>
<tr>
<td>Jens Breithbart and Gaurav Khanna</td>
<td></td>
</tr>
<tr>
<td>Introducing the Semi-stencil Algorithm</td>
<td>496</td>
</tr>
<tr>
<td>Raúl de la Cruz, Mauricio Araya-Polo, and José María Cela</td>
<td></td>
</tr>
<tr>
<td>Astronomical Period Searching on the Cell Broadband Engine</td>
<td>507</td>
</tr>
<tr>
<td>Maciej Cytowski, Maciej Remiszewski, and Igor Soszyński</td>
<td></td>
</tr>
<tr>
<td>Finite Element Numerical Integration on PowerXCell Processors</td>
<td>517</td>
</tr>
<tr>
<td>Filip Krużel and Krzysztof Banaś</td>
<td></td>
</tr>
<tr>
<td>The Implementation of Regional Atmospheric Model Numerical Algorithms for CBEA-Based Clusters</td>
<td>525</td>
</tr>
<tr>
<td>Dmitry Mikushin and Victor Stepanenko</td>
<td></td>
</tr>
<tr>
<td>Adaptation of Double-Precision Matrix Multiplication to the Cell</td>
<td>535</td>
</tr>
<tr>
<td>Broadband Engine Architecture</td>
<td></td>
</tr>
<tr>
<td>Krzysztof Rojek and Lukasz Szustak</td>
<td></td>
</tr>
</tbody>
</table>
Optimization of FDTD Computations in a Streaming Model
Architecture... 547
 Adam Smyk and Marek Tůdrů

Workshop on Memory Issues on Multi- and Manycore Platforms

An Orthogonal Matching Pursuit Algorithm for Image Denoising on
the Cell Broadband Engine.. 557
 Dominik Bartuschat, Markus Stürmer, and Harald Köstler

A Blocking Strategy on Multicore Architectures for Dynamically
Adaptive PDE Solvers ... 567
 Wolfgang Eckhardt and Tobias Weinzierl

Affinity-On-Next-Touch: An Extension to the Linux Kernel for NUMA
Architectures ... 576
 Stefan Lankes, Boris Bierbaum, and Thomas Bemmerl

Multi–CMP Module System Based on a Look-Ahead Configured Global
Network .. 586
 Eryk Laskowski, Lukasz Maśko, and Marek Tůdrů

Empirical Analysis of Parallelism Overheads on CMPs 596
 Ami Marowka

An Implementation of Parallel 3-D FFT with 2-D Decomposition on a
Massively Parallel Cluster of Multi-Core Processors 606
 Daisuke Takahashi

Introducing a Performance Model for Bandwidth-Limited Loop
Kernels .. 615
 Jan Treibig and Georg Hager

Author Index .. 625