Handbook of Experimental Pharmacology

Volume 200

Editor-in-Chief
F.B. Hofmann, München

Editorial Board
J.A. Beavo, Seattle, WA
A. Busch, Berlin
D. Ganten, Berlin
J.-A. Karlsson, Singapore
M.C. Michel, Amsterdam
C.P. Page, London
W. Rosenthal, Berlin

For further volumes:
http://www.springer.com/series/164
Bertil B. Fredholm
Editor

Methylxanthines

Springer
Dedication to Klaus Starke

This volume of the *Handbook of Experimental Pharmacology* was one of the last that Klaus Starke initiated as Editor-in-Chief. We dedicate this 200th volume in the series to him.

Klaus was born in 1937. Since his father was an apothecary, it was natural for him to study pharmacy, but he also graduated in medicine. He combined the two, and devoted himself to pharmacology, where he has left a very important mark. Despite calls from many other universities, he remained in Freiburg from 1977. He was one of the scientists who simultaneously realized that neurotransmitters can regulate their own release via presynaptic receptors. This discovery has been extremely important in our understanding of the fine-tuning of neuronal activity. The pharmacology of these presynaptic receptors was recently summarized in volume 184 of the handbook, which was edited by Klaus together with Thomas Südhof. Klaus is deeply respected internationally for his solid science. He is a member of the Academia Europaea, the Heidelberger Akademie der Wissenschaften, and the National German Academy “Deutsche Akademie der Naturforscher Leopoldina.” He received the Ernst Jung-Preis and the Wilhelm Feldberg-Preis.

In addition to his scientific accomplishments, Klaus has influenced and shaped German pharmacology by his teaching and his dedicated work on numerous committees and in grant-awarding agencies. He has also been deeply involved in many pharmacology journals. The extreme care he took with each manuscript submitted to *Naunyn-Schmiedeberg’s Archives of Pharmacology* during his period as managing editor is very memorable to all of us who benefited from his penetrating, but benevolent editing. This devoted attention to both detail and strategic goals was brought by him to the *Handbook of Experimental Pharmacology*. He had, for example, several excellent suggestions on how to organize this volume and he even suggested that we include two poems. One of them was used in the introduction to this volume. The other is printed below. It shows his interests in cultural activities outside pharmacology.
Given the care with which Klaus always dealt with everything, it is with some
trepidation that we submit this volume to his scrutiny.

Bertil Fredholm  
Volume Editor

Franz Hofmann  
Editor-in-Chief

For Io! the Board with Cups and Spoons is crown’d,
The Berries crackle, and the Mill turns round;  
On shining Altars of Japan they raise
The silver Lamp, and fiery Spirits blaze:  
From silver Spouts the grateful Liquors glide,  
And China’s earth receives the smoking Tyde.  
At once they gratify their Scent and Taste,  
While frequent Cups prolong the rich Repast. . .
Coffee (which makes the Politician wise,  
And see through all things with his half-shut Eyes)  
Sent up in Vapours to the Baron’s Brain
New Stratagems, the radiant Lock to gain.

Alexander Pope (1688–1744) The Rape of the Lock
Methylxanthines are doubtless the most widely consumed of all pharmacologically active agents. The reason for this is, of course, that caffeine-containing beverages are consumed on a daily basis by the majority of humans. The human use of coffee and tea was limited until surprisingly recently. Now the global use means that coffee and tea are very important products commercially. Indeed, the sale of tea and coffee has been an important source of national income and for a long time provided the main source of income of the greatest nation in the world at the time, China.

Methylxanthines are found in several plants, from many parts of the world. Coffee beans were probably discovered in Africa, tea leaves in East Asia, mate and cocoa in South America, but it is also found in some 100 other plant species. To make these compounds the plants have developed sophisticated enzymatic machinery. The reason for the investment in methylxanthine synthesis is possibly because methylxanthines can act as a chemical defense, and hence because methylxanthines can have toxic effects. Caffeine is taken up well and distributed throughout the body and elimination depends on a series of enzymatic steps. These differ between species and ages of the same species, including man.

At the beginning of human use of both coffee and tea, the focus was on the medicinal effects, which were both lauded as beneficial and deplored as being detrimental. Now the major interest is perhaps in the public health consequences of the widespread use. Over the years, considerable effort has been spent in population studies to elucidate the risks of caffeine use. One of the surprising things in recent years has been the realization that the evidence for health benefits in, e.g., Parkinson’s disease and type II diabetes, has been easier to document than that for possible detrimental effects in, e.g., cardiovascular disease. There are also some possibilities to use methylxanthines or derivatives as drugs. While this is good news, the bad news is that we are still not clear how these effects are brought about. There have been concerns that caffeine may be a major reproductive hazard, but provided that women limit their intake, this may not be a real concern.

Methylxanthines were early shown to cause muscle contractions in high doses, an effect we now know is due to mobilization of intracellular caffeine. In somewhat lower doses, caffeine and theophylline were found to prevent the enzymatic
hydrolysis of cyclic AMP. At still lower doses, they block the actions of adenosine at its receptors. All these actions, and some others, contribute to give methylxanthines a complex pharmacological profile, where utmost care must be taken with dosing.

In this volume of the *Handbook of Experimental Pharmacology*, well-known experts describe the facts alluded to above in detail with a focus on caffeine and theophylline. A special chapter is devoted to theobromine, an active component of chocolate, the actions of which are less well characterized. We also present the pharmacology of one xanthine derivative, propentofylline, as an example of a xanthine that has gone through extensive development for a novel therapeutic area.

The powerful effects caffeine exerts on the nervous system are covered. The ability of methylxanthines to influence the physiological processes involved in sleep and the pathophysiological processes involved in pain are described as largely secondary to adenosine antagonism. Methylxanthines can provoke epileptic seizures, and prevent neurodegenerative disease, but the possible mechanisms, involving actions on one or more adenosine receptors, on both neuronal and nonneuronal cells have not yet been fully elucidated. There are interesting therapeutic possibilities, and novel xanthine derivatives are being examined. The fact that caffeine-containing beverages have so rapidly established themselves in a variety of cultural settings raises the possibility that caffeine may actually be a dependence-producing drug. Indeed, there are important interactions with some of the neural systems involved in dependence, but caffeine is not a typical drug of addiction, despite the fact that in the famous coffee cantata of Bach (see below) the heroine is almost willing to forego the pleasures of sex for coffee.

It has also been well known for a long time that caffeine (and some of its metabolites) can influence respiration and can be used to treat asthma, that there are increases in cardiac activity and blood pressure, and that methylxanthines have marked renal effects. In all these instances, a major explanation for the effects is blockade of the actions of endogenous adenosine. This is also the reason why methylxanthines can influence cells of the immune system, an action with therapeutic implications, which has been realized for a much shorter time. By contrast, there is evidence that the metabolic effects of coffee and tea may not be entirely explained by adenosine receptor blockade, or by the caffeine content for that matter.

It has been a pleasure to work with world experts in a common effort to produce an up-to-date and authoritative account of the pharmacology of methylxanthines. We have aimed to give more than just a description of facts or findings, and instead to present ideas, concepts, and open questions.

“Ei! wie schmeckt der Coffee süße,
Lieblicher als tausend Kusse,
Milder als Muskatenwein.
Coffee, Coffee muß ich haben,
Und wenn jemand mich will laben,
Ach, so schenkt mir Coffee ein!”

Lieschens Aria (fourth movement) from Bach’s Coffee Cantata BWV 211, “Schweigt stille, plaudert nicht.”

Stockholm

Bertil Fredholm
# Contents

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notes on the History of Caffeine Use</td>
<td>1</td>
</tr>
<tr>
<td>Bertil B. Fredholm</td>
<td></td>
</tr>
<tr>
<td>Distribution, Biosynthesis and Catabolism of Methylxanthines in Plants</td>
<td>11</td>
</tr>
<tr>
<td>Hiroshi Ashihara, Misako Kato, and Alan Crozier</td>
<td></td>
</tr>
<tr>
<td>Pharmacokinetics and Metabolism of Natural Methylxanthines in Animal and Man</td>
<td>33</td>
</tr>
<tr>
<td>Maurice J. Arnaud</td>
<td></td>
</tr>
<tr>
<td>Inhibition of Cyclic Nucleotide Phosphodiesterases by Methylxanthines and Related Compounds</td>
<td>93</td>
</tr>
<tr>
<td>Sharron H. Francis, Konjeti R. Sekhar, Hengming Ke, and Jackie D. Corbin</td>
<td></td>
</tr>
<tr>
<td>Methylxanthines and Ryanodine Receptor Channels</td>
<td>135</td>
</tr>
<tr>
<td>Serge Guerreiro, Marc Marien, and Patrick P. Michel</td>
<td></td>
</tr>
<tr>
<td>Xanthines as Adenosine Receptor Antagonists</td>
<td>151</td>
</tr>
<tr>
<td>Christa E. Müller and Kenneth A. Jacobson</td>
<td></td>
</tr>
<tr>
<td>Theobromine and the Pharmacology of Cocoa</td>
<td>201</td>
</tr>
<tr>
<td>Hendrik Jan Smit</td>
<td></td>
</tr>
<tr>
<td>Propentofylline: Glial Modulation, Neuroprotection, and Alleviation of Chronic Pain</td>
<td>235</td>
</tr>
<tr>
<td>Sarah Sweitzer and Joyce De Leo</td>
<td></td>
</tr>
<tr>
<td>Methylxanthines, Seizures, and Excitotoxicity</td>
<td>251</td>
</tr>
<tr>
<td>Detlev Boison</td>
<td></td>
</tr>
</tbody>
</table>
Contributors

**Ulrika Ådén**  
Department of Woman and Child Health, Karolinska Institute, 171 77, Stockholm, Sweden, ulrika.aden@ki.se

**Maurice J. Arnaud**  
Nutrition and Biochemistry, Bourg-Dessous 2A, 1814, La Tour-de-Peilz, Switzerland, mauricearnaud@hotmail.com

**Hiroshi Ashihara**  
Department of Biological Sciences, Graduate School of Humanities and Sciences, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan, ashihara. hiroshi@ocha.ac.jp

**Marie-Soleil Beaudoin**  
Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada

**Ilaria Bellezza**  
Dipartimento di Medicina Sperimentale e Scienze Biochimiche, Università degli Studi di Perugia, Via del Giochetto, 06123 Perugia, Italy

**Detlev Boison**  
R.S. Dow Neurobiology Laboratories, Legacy Research, Portland, OR 97232, USA

**Jiang-Fan Chen**  
Department of Neurology, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA, chenjf@bu.edu
Yijuang Chern
Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan

Jackie D. Corbin
Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Light Hall Room 702, Nashville, TN 37232-0615, USA

Bruce Cronstein
Department of Medicine, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA

Alan Crozier
Plant Products and Human Nutrition Group, Division of Developmental Medicine, Faculty of Medicine, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, UK, a.crozier@bio.gla.ac.uk

Sharron H. Francis
Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Light Hall Room 702, Nashville, TN 37232-0615, USA sharron.francis@vanderbilt.edu

Bertil B. Fredholm
Department of Physiology and Pharmacology, Karolinska Institute, Nanna Svartz väg 2, 171 77 Stockholm, Sweden, bertil.fredholm@ki.se

Terry E. Graham
Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada, terrygra@uoguelph.ca

Serge Guerreiro
Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l’Institut du Cerveau et de la Moelle Epinière, UMR-S975, Paris, France; Institut National de la Santé et de la Recherche Médicale, U-975, Paris, France; Centre National de la Recherche Scientifique, UMR 7225, Paris, France

György Haskó
Department of Surgery, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
Contributors xiii

Kenneth A. Jacobson
Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 8A, Room BIA-19, 8 center Dr. 2089–0810 NIH, NIDDK, LBC, Bethesda, MD, USA

Misako Kato
Department of Biological Sciences, Graduate School of Humanities and Sciences, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan, kato.misako@cha.ac.jp

Hengming Ke
Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, 306 Mary Ellen Jones Building, Chapel Hill, NC 27599-7260, USA

Joyce De Leo
Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755, USA, joyce.a.deleo@dartmouth.edu

Marc Marien
Institut de Recherche Pierre Fabre, Castres, France

Patrick P. Michel
Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l’Institut du Cerveau et de la Moelle Epinière, UMR-S975, Paris, France; Institut National de la Santé et de la Recherche Médicale, U-975, Paris, France; Centre National de la Recherche Scientifique, UMR 7225, Paris, France, patrick-pierre.michel@upmc.fr

Alba Minelli
Dipartimento di Medicina Sperimentale e Scienze Biochimiche, Università degli Studi di Perugia, Via del Giochetto, 06123 Perugia, Italy, aminelli@unipg.it

Micaela Morelli
Department of Toxicology, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy; Centre of Excellence for Neurobiology of Dependence, University of Cagliari, 09124 Cagliari, Italy; CNR Institute of Neuroscience, Cagliari, Italy, morelli@unica.it

Christa E. Müller
Pharma Center Bonn, Pharmaceutical Sciences Bonn (PSB), University of Bonn, Pharmaceutical Institute, An der Immenburg 4, 53121 Bonn, Germany, christa.mueller@uni-bonn.de
Akio Ohta  
Department of Pharmaceutical Sciences, New England Inflammation and Tissue Protection Institute, Northeastern University, 134 Mugar Building, 360 Huntington Avenue, Boston, MA 02115, USA, a.ohta@neu.edu

Hartmut Osswald  
Department of Pharmacology and Toxicology, University of Tübingen, Wilhelmstrasse 56, 72074 Tübingen, Germany

Tarja Porkka-Heiskanen  
Institute of Biomedicine/Physiology, University of Helsinki, P.O. Box 63, Haartmaninkatu 8, 00014 Helsinki, Finland, porkka@cc.helsinki.fi

Niels P. Riksen  
Department of Pharmacology-Toxicology and Internal Medicine, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands, n.rikсен@aig.umcn.nl

Gerard A. Rongen  
Department of Pharmacology-Toxicology and Internal Medicine, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands

Jana Sawynok  
Department of Pharmacology, Dalhousie University, Halifax, NS B3H 1X5, Canada, sawynok@dal.ca

Jürgen Schnermann  
National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 10, Room 4D51, 10 Center Drive MSC 1370, Bethesda, MD 20892, USA, jurgens@intra.niddk.nih.gov

Konjeti R. Sekhar  
Department of Radiation Biology, Vanderbilt University School of Medicine, DD-1205 MCN, Nashville, TN 37232, USA

Nicola Simola  
Department of Toxicology, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
Michail Sitkovsky
Department of Pharmaceutical Sciences, New England Inflammation and Tissue Protection Institute, Northeastern University, 134 Mugar Building, 360 Huntington Avenue, Boston, MA 02115, USA; Cancer Vaccine Center, Dana-Farber Cancer Institute, Harvard Institutes of Medicine, 77 Avenue Pasteur, Room 418, Boston, MA 02115, USA

Hendrik Jan Smit
Functional Food Centre, Oxford Brookes University, Headington Campus, Gipsy Lane, Oxford OX3 0BP, UK, hsmit@brookes.ac.uk

Paul Smits
Department of Pharmacology-Toxicology and Internal Medicine, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB, Nijmegen, The Netherlands

Sarah Sweitzer
Department of Pharmacology, Physiology and Neuroscience, University of South Carolina, USC School of Medicine, Columbia, SC 29208, USA

Stephen L. Tilley
Department of Medicine, Division of Pulmonary and Critical Care Medicine, and Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina, Chapel Hill, NC 27599, USA, stephen_tilley@med.unc.edu