IFIP Advances in Information and Communication Technology

Editor-in-Chief

A. Joe Turner, Seneca, SC, USA

Editorial Board

Foundations of Computer Science
 Mike Hinchey, Lero, Limerick, Ireland
Software: Theory and Practice
 Bertrand Meyer, ETH Zurich, Switzerland
Education
 Bernard Cornu, CNED-EIFAD, Poitiers, France
Information Technology Applications
 Ronald Waxman, EDA Standards Consulting, Beachwood, OH, USA
Communication Systems
 Guy Leduc, Université de Liège, Belgium
System Modeling and Optimization
 Jacques Henry, Université de Bordeaux, France
Information Systems
 Barbara Pernici, Politecnico di Milano, Italy
Relationship between Computers and Society
 Chrisanthi Avgerou, London School of Economics, UK
Computer Systems Technology
 Paolo Prinetto, Politecnico di Torino, Italy
Security and Privacy Protection in Information Processing Systems
 Kai Rannenberg, Goethe University Frankfurt, Germany
Artificial Intelligence
 Max A. Bramer, University of Portsmouth, UK
Human-Computer Interaction
 Annelise Mark Peitersen, Center of Cognitive Systems Engineering, Denmark
Entertainment Computing
 Ryohei Nakatsu, National University of Singapore
IFIP – The International Federation for Information Processing

IFIP was founded in 1960 under the auspices of UNESCO, following the First World Computer Congress held in Paris the previous year. An umbrella organization for societies working in information processing, IFIP’s aim is two-fold: to support information processing within its member countries and to encourage technology transfer to developing nations. As its mission statement clearly states,

IFIP’s mission is to be the leading, truly international, apolitical organization which encourages and assists in the development, exploitation and application of information technology for the benefit of all people.

IFIP is a non-profitmaking organization, run almost solely by 2500 volunteers. It operates through a number of technical committees, which organize events and publications. IFIP’s events range from an international congress to local seminars, but the most important are:

- The IFIP World Computer Congress, held every second year;
- Open conferences;
- Working conferences.

The flagship event is the IFIP World Computer Congress, at which both invited and contributed papers are presented. Contributed papers are rigorously refereed and the rejection rate is high.

As with the Congress, participation in the open conferences is open to all and papers may be invited or submitted. Again, submitted papers are stringently refereed.

The working conferences are structured differently. They are usually run by a working group and attendance is small and by invitation only. Their purpose is to create an atmosphere conducive to innovation and development. Refereeing is less rigorous and papers are subjected to extensive group discussion.

Publications arising from IFIP events vary. The papers presented at the IFIP World Computer Congress and at open conferences are published as conference proceedings, while the results of the working conferences are often published as collections of selected and edited papers.

Any national society whose primary activity is in information may apply to become a full member of IFIP, although full membership is restricted to one society per country. Full members are entitled to vote at the annual General Assembly, National societies preferring a less committed involvement may apply for associate or corresponding membership. Associate members enjoy the same benefits as full members, but without voting rights. Corresponding members are not represented in IFIP bodies. Affiliated membership is open to non-national societies, and individual and honorary membership schemes are also offered.
Preface

The development of new-generation micro-manufacturing technologies and systems has revolutionised the way products are designed and manufactured today with a significant impact in a number of key industrial sectors. Micro-manufacturing technologies are often described as disruptive, enabling and interdisciplinary leading to the creation of whole new classes of products that were previously not feasible to manufacture. While key processes for volume manufacture of micro-parts such as machining and moulding are becoming mature technologies, micro-assembly remains a key challenge for the cost-effective manufacture of complex micro-products. The ability to manufacture customizable micro-products that can be delivered in variable volumes within relatively short timescales is very much dependent on the level of development of the micro-assembly processes, positioning, alignment and measurement techniques, gripping and feeding approaches and devices.

Micro-assembly has developed rapidly over the last few years and all the predictions are that it will remain a critical technology for high-value products in a number of key sectors such as healthcare, communications, defence and aerospace. The key challenge is to match the significant technological developments with a new generation of micro-products that will establish firmly micro-assembly as a mature manufacturing process.

The book includes the set of papers presented at the 5th International Precision Assembly Seminar IPAS 2010 held in Chamonix, France from the 14th to the 17th February 2010. The International Precision Assembly Seminar was established on 2003 by the European Thematic Network Assembly-Net to provide a forum for discussing the latest research, new innovative technologies and industrial applications in the area of precision (mini and micro) assembly.

The published works have been grouped into four parts. Part 1 is dedicated to micro-product design with specific emphasis on design for micro-assembly (DFμA) methods and solutions. Part 2 is focused on micro-assembly processes and includes contributions in process modelling, high-precision packaging and assembly techniques and specific examples of micro-assembly applications. Part 3 describes the latest developments in micro-gripping, micro-feeding and micro-metrology. Part 4 provides an overview of the recent developments in the design of micro-assembly production systems with specific emphasis on reconfigurable modular micro-assembly equipment solutions.

The seminar is sponsored by the International Federation of Information Processing (IFIP) WG5.5, the International Academy of Production Research (CIRP) and the European Factory Automation Committee (EFAC). The seminar is supported by a number of ongoing research initiatives and projects including the European sub-technology platform in Micro and Nano Manufacturing MINAM, the UK EPSRC Grand Challenge Project 3D Mintegration, the EU-funded coordinated action NanoCom and the EU-funded collaborative project FRAME.
The organisers should like to express their gratitude to the members of the International Advisory Committee for their support and guidance and to the authors of the papers for their original contributions. Our special thanks go to Luis Camarinha-Matos, Chair of the IFIP WG5.5, and Michael Hauschild, Chair of the STC A of CIRP, for their continuous support and encouragement. And finally our thanks go to Ruth Strickland and Rachel Watson from the Precision Manufacturing Centre at the University of Nottingham for handling the administrative aspects of the seminar, putting the proceedings together and managing the detailed liaison with the authors and the publishers.

February 2010

Svetan M. Ratchev
Organization

International Advisory Committee

T. Arai
University of Tokyo, Japan

H. Afsarmanesh
University of Amsterdam, The Netherlands

M. Björkman
Linköping Institute of Technology, Sweden

H. Bley
University of Saarland, Germany

C.R. Boer
ICIMSI-SUPSI, Switzerland

I. Boiadjiev
TU Sofia, Bulgaria

L.M. Camarinha Matos
University Nova, Portugal

D. Ceglarek
Warwick University, UK

A. Delchambre
ULB, Belgium

M. Desmulliez
Heriot-Watt University, UK

S. Dimov
University of Cardiff, UK

G. Dini
University of Pisa, Italy

S. Durante
DIAD, Italy

K. Ehmann
Northwestern University, USA

R. Fearing
University of California at Berkeley, USA

R.W. Grubbström
Linköping Institute of Technology, Sweden

C. Hanisch
Festo AG & Co, Germany

T. Hasegawa
Kyushu University, Japan

J. Heilala
VTT, Finland

J. Jacot
EPFL, Switzerland

M. Krieger
CSEM, Switzerland

S. Koelemeijer
Jaeger-Lecoultre, Switzerland

P. Lambert
ULB, Belgium

R. Leach
National Physical Laboratory, UK

N. Lohse
University of Nottingham, UK

P. Lutz
LAB, France

H. Maekawa
Nat. Inst. of Adv. Industrial Science and Technology, Japan

B. Nelson
ETH, Switzerland

J. Ni
University of Michigan, USA

D. Pham
Cardiff University, UK

M. Pillet
Polytech Savoie, France

G. Putnik
University of Minho, Portugal

B. Raucent
UCL, Belgium

K. Ridgway
Sheffield University, UK

G. Seliger
TU Berlin, Germany

W. Shen
Nat. Research Council, Canada

M. Tichem
TU Delft, The Netherlands

R. Tuokko
TUT, Finland

E. Westkämper
Fraunhofer IPA, Germany

D. Williams
Loughborough University, UK
Table of Contents

Part I: Design of Micro Products

Chapter 1. Design for Micro-assembly

Analysis of the Applicability of Design for Microassembly Theory to Biomedical Devices ... 5
Carsten Tietje, Daniel Smale, Steve Haley, and Svetan Ratchev

A Haptic Tele-operated System for Microassembly 13

Neutral Interface for Assembly and Manufacturing Related Knowledge Exchange in Heterogeneous Design Environment 21
Minna Lanz, Roberto Rodriguez, Pasi Luostarinen, and Reijo Tuokko

Chapter 2. Tolerancing for Micro-assembly

Defining Tolerances in Assembly Process with the Aid of Simulation . . . 33
H.-A. Crostack, R. Refflinghaus, and Jirapha Liangsiri

Assembly Analysis of Interference Fits in Elastic Materials 41
Kannan Subramanian and Edward P. Morse

How Form Errors Impact on 2D Precision Assembly with Clearance? .. 50
Pierre-Antoine Adragna, Serge Samper, and Hugues Favreliere

Part II: Micro-assembly Processes

Chapter 3. Development of Micro-joining Processes

Precision Assembling and Hybrid Bonding for Micro Fluidic Systems ... 65
Agathe Koller-Hodac, Manuel Altmeyer, and Silvio Walpen

Feasibility of Laser Induced Plasma Micro-machining (LIP-MM) 73
Kumar Pallav and Kornel F. Ehmann
<table>
<thead>
<tr>
<th>Chapter 4. Innovative Assembly Processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hybrid Assembly for Ultra-Precise Manufacturing</td>
</tr>
<tr>
<td>Alexander Steinecker</td>
</tr>
<tr>
<td>Development of the Roll Type Incremental Micro Pattern Imprint System for Large Area Pattern Replication</td>
</tr>
<tr>
<td>Utilisation of FIB/SEM Technology in the Assembly of an Innovative Micro-CMM Probe</td>
</tr>
<tr>
<td>Daniel Smale, Steve Haley, Joel Segal, Ronaldo Ronaldo, Svetan Rachev, Richard K. Leach, and James D. Claverley</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 5. Metrology and Control for Micro-assembly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miniaturized Camera Systems for Microfactories</td>
</tr>
<tr>
<td>Timo Prusi, Petri Rokka, and Reijo Tuokko</td>
</tr>
<tr>
<td>Vision and Force Sensing to Decrease Assembly Uncertainty</td>
</tr>
<tr>
<td>R. John Ellwood, Annika Raatz, and Jürgen Hesselbach</td>
</tr>
<tr>
<td>Modelling the Interaction Forces between an Ideal Measurement Surface and the Stylus Tip of a Novel Vibrating Micro-scale CMM Probe</td>
</tr>
<tr>
<td>J.D. Claverley, A. Georgi, and R.K. Leach</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part III: Gripping and Feeding Solutions for Micro-assembly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 6. High Precision Positioning and Alignment Techniques</td>
</tr>
<tr>
<td>Alignment Procedures for Micro-optics</td>
</tr>
<tr>
<td>Matthias Mohaupt, Erik Beckert, Ramona Eberhardt, and Andreas Tünnermann</td>
</tr>
<tr>
<td>Title</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Pneumatic Driven Positioning and Alignment System for the Assembly</td>
</tr>
<tr>
<td>of Hybrid Microsystems</td>
</tr>
<tr>
<td>Christian Brecher, Martin Freundt, and Christian Wenzel</td>
</tr>
<tr>
<td>Flexure-Based 6-Axis Alignment Module for Automated Laser Assembly</td>
</tr>
<tr>
<td>Christian Brecher, Nicolas Pyschny, and Jan Behrens</td>
</tr>
<tr>
<td>Approach for the 3D-Alignment in Micro- and Nano-scale Assembly</td>
</tr>
<tr>
<td>Thomas Wich, Christian Stolle, Manuel Mikczewski, and Sergej Fatikow</td>
</tr>
<tr>
<td>Guidelines for Implementing Augmented Reality Procedures in</td>
</tr>
<tr>
<td>Assisting Assembly Operations</td>
</tr>
<tr>
<td>Viviana Chimienti, Salvatore Iliano, Michele Dassisti, Gino Dini, and Franco Failli</td>
</tr>
<tr>
<td>Monodirectional Positioning Using Dielectric Elastomers</td>
</tr>
<tr>
<td>C. Pagano, M. Malosio, and I. Fassi</td>
</tr>
</tbody>
</table>

Chapter 7. Gripping and Handling Solutions

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Gripper for Hot Melt Joining of Micro Components</td>
<td>191</td>
</tr>
<tr>
<td>Sven Rathmann, Annika Raatz, and Jürgen Hesselbach</td>
<td></td>
</tr>
<tr>
<td>Grasping and Interaction Force Feedback in Microassembly</td>
<td>199</td>
</tr>
<tr>
<td>Marcello Porta and Marcel Tichem</td>
<td></td>
</tr>
<tr>
<td>Low Voltage Thermo-mechanically Driven Monolithic Microgripper</td>
<td>207</td>
</tr>
<tr>
<td>with Piezoresistive Feedback</td>
<td></td>
</tr>
<tr>
<td>Vladimir Stavrov, Emil Tomerov, Chavdar Hardalov, Daniel Danchev, Kostadin Kostadinov, Galina Stavreva, Evstati Apostolov, Assen Shulev, Anna Andonova, and Mohammed Al-Wahab</td>
<td></td>
</tr>
<tr>
<td>Improvement of Robotic Micromanipulations Using Chemical Functionalisations</td>
<td>215</td>
</tr>
<tr>
<td>Jérôme Dejeu, Patrick Rougeot, Michäel Gauthier, and Wilfrid Boireau</td>
<td></td>
</tr>
<tr>
<td>Positioning, Structuring and Controlling with Nanoprecision</td>
<td>222</td>
</tr>
<tr>
<td>Regine Hedderich, Tobias Heiler, Roland Gröger, Thomas Schimmel and Stefan Walheim</td>
<td></td>
</tr>
<tr>
<td>Challenges of Precision Assembly with a Miniaturized Robot</td>
<td>227</td>
</tr>
<tr>
<td>Arne Burisch, Annika Raatz, and Jürgen Hesselbach</td>
<td></td>
</tr>
</tbody>
</table>
Table of Contents

Part IV: Development of Micro-assembly Production Systems

Chapter 8. Modular Reconfigurable Assembly Systems

- Application of a Reconfiguration Methodology for Multiple Assembly System Reconfigurations

 D. Smale and S. Ratchev

 Page 239

- Multi-agent Architecture for Reconfiguration of Precision Modular Assembly Systems

 Pedro Ferreira, Niels Lohse, and Svetan Ratchev

 Page 247

- Reconfigurable Self-optimising Handling System

 Rainer Müller, Martin Riedel, Matthias Vette, Burkhard Corves, Martin Esser, and Mathias Hüsing

 Page 255

- Modular and Generic Control Software System for Scalable Automation

 Christian Brecher, Martin Freundt, and Daniel Schöllhorn

 Page 263

- Agile Multi-parallel Micro Manufacturing Using a Grid of Equiplets

 Erik Puik and Leo van Moergestel

 Page 271

- Development of a Reconfigurable Fixture for the Automated Assembly and Disassembly of High Pressure Rotors for Rolls-Royce Aero Engines

 Thomas Papastathis, Marco Ryll, Stuart Bone, and Svetan Ratchev

 Page 283

Chapter 9. Micro-Factory

- Architectures and Interfaces for a Micro Factory Concept

 Niko Siltala, Riku Heikkilä, Asser Vuola, and Reijo Tuokko

 Page 293

- Desktop Micro Forming System for Micro Pattern on the Metal Substrate

 Hye-Jin Lee, Jung-Han Song, Sol-Kil Oh, Kyoung-Tae Kim, Nak-Kyu Lee, Geun-An Lee, Hyoungh-Wook Lee, and Andy Chu

 Page 301

- Miniaturization of Flexible Screwing Cell

 Asser Vuola, Riku Heikkilä, Timo Prusi, Mikko Remes, Petri Rokka, Niko Siltala, and Reijo Tuokko

 Page 309
Chapter 10. Micro-assembly Technology Studies

A Cooperation Model and Demand-Oriented ICT Infrastructure for SME Development and Production Networks in the Field of Microsystem Technology ... 319
Markus Dickerhof

A Methodology for Evaluating the Technological Maturity of Micro and Nano Fabrication Processes.. 329
Emmanuel Brousseau, Richard Barton, Stefan Dimov, and Samuel Bigot

Function and Length Scale Integration Study in Emerging MST-Based Products ... 337
Samuel Bigot, Stefan Dimov, and Roussi Minev

Author Index ... 343