Burrs – Analysis, Control and Removal
Preface

The International Conference on Analysis, Control and Removal of Burrs, held at the University of Kaiserslautern, Germany, marks the end of the three-year cycle of the CIRP working group on Burrs. During these years, researchers as well as experts from industry have contributed and gathered knowledge on research and industrial practice in the area of burrs, edge conditions and part cleanliness. A CIRP round robin has been carried out with participants in many countries and three continents to compare available methods on burr measurement.

This conference now brings together the members of the working group as well as experts from industry and academia from all over the world to discuss the state of the art in research as well as industrial applications in the area of burrs in one focused conference with a special workshop character. The conference shall provide a forum for the intense exchange of concepts and methods, the dissemination of technological breakthroughs, and for discussions of future directions of research and development.

The conference program covers a broad spectrum of topics ranging from standards for burr description and classification and the mechanics of burr formation over modeling and simulation of the underlying mechanisms to burr control and deburring strategies. Our special appreciation goes to the invited keynote speakers: Prof. Dornfeld from UC Berkeley, USA, one of the leading experts in the field, will give an overview of the state of research in analysis, control and removal of burrs. Prof. Biermann from TU Dortmund, Germany, will draw on his scientific and industrial experience to present burr reduction and control strategies. Mr. Berger from Daimler, Germany, and Dr. Martinsen from RTIM, Norway, will give an insight into the industrial importance of burr issues and part cleanliness.

Our special gratitude goes to the International Program Committee and Local Organizing Committee members for their wonderful efforts in reviewing papers, handling papers, and preparing the technical and social program. Without their effort and dedication the conference would not have been possible. We would also like to extend our sincere appreciation to the paper authors for their excellent contributions to the conference. The authors who are willing to share their most recent findings in basic research as well as in industrial application, both in presentations and in many discussions in and around the technical sessions, represent the dominant factor in the success of this conference. Finally, the organizations and companies who contributed to the financial support of the conference, even in financially difficult times, deserve our great respect for their contribution. We would also like to thank the companies who opened their facilities for the industrial tour. They allowed giving this conference the final touch of strong interaction between research institutions and industry.
On behalf of the organizing committee, I wish all of you a successful conference, with exciting technical sessions, fruitful discussions and a perfect get together of our research community.

Jan C. Aurich
Kaiserslautern, Germany

David Dornfeld
Berkeley, CA, USA
Contents

Keynotes
A Review of Burr Formation in Machining 3
D. Dornfeld and S. Min
Burr Minimization Strategies in Machining Operations 13
D. Biermann and M. Heilmann
Burr Formation and Avoidance for Robust Circular Blade Sawing of Thin Walled Extruded Aluminum Profiles 21
K. Martinsen and G. Ringen

Mechanics, Modeling and Simulation of Burr Formation
Burr and Cap Formation by Orbital Drilling of Aluminum 31
E. Brinksmeier and S. Fangmann
Cutting Force Model for Analysis of Burr Formation in Drilling Process 47
T. Matsumura and J. Leopold
Burr Formation in Microstructuring Processes 55
B. Denkena, L. de Leon, and J. Kästner
Analytical Modeling and Experimental Investigation of Burr Formation in Grinding 63
H. Sudermann, I.G. Reichenbach and J.C. Aurich
Developing a Process Model for Abrasive Flow Machining 73
E. Uhlmann, V. Mihotovic, H. Szulczynski, and M. Kretzschmar
Modeling and Simulation of Burr Formation: State-of-the-Art and Future Trends 79
J. Leopold and R. Wohlgemuth

Burr and Chip Formation Mechanisms
Interfacial Burr Formation in Drilling of Stacked Aerospace Materials 89
Burr Formation in Drilling Intersecting Holes 99
L. Leitz, V. Franke, and J.C. Aurich
Chip Breakage Prediction by a Web-based Expert System 107
F. Klocke, D. Lung, and C. Essig
Parameters with Influence on Burr Formation

Size Effects in Drilling Burr Formation .. 117
R. Neugebauer, G. Schmidt, and M. Dix

Burr Formation and Surface Characteristics in Micro-End Milling
of Titanium Alloys ... 129
G.M. Schueler, J. Engmann, T. Marx, R. Haberland, and J.C. Aurich

Influence of Minimum Quantity Lubrication on Burr Formation in Milling 139
U. Heisel, M. Schaal, and G. Wolf

Burr Formation and Removal at Profile Grinding of Riblet Structures 147
B. Denkena, L. de Leon, and B. Wang

Burr Measurement

Burr Measurement System for Drilled Hole at Inclined Exit Surface 157
H.P. Hoang and S.L. Ko

Burr Measurement: A Round Robin Test Comparing Different Methods 167
V. Franke, L. Leitz, and J.C. Aurich

Deburring Processes – Fundamentals

Deburring with CO₂ Snow Blasting ... 181
E. Uhlmann, M. Kretzschmar, F. Elbing, and V. Mihotovic

A Study on Deburring Inconel 718 Using Water Jet Technology 189
F. Boud, J. Folkes, N. Tantra, S. Kannan, and I.W. Wright

Ice Blasting – An Innovative Concept for the Problem-Oriented Deburring
of Workpieces ... 197
B. Karpuschewski and M. Petzel

Deburring Processes – Applications

Study of Internal Deburring of Capillary Tubes with Multiple
Laser-machined Slits .. 205
H. Yamaguchi and J. Kang

Robotic Deburring Based on On-line Burr Measurement 213
L. Liao, F. Xi, and S. Engin

Deburring Machine for Round Billets – Equipment for Efficient Removal
of Burrs from Billets ... 221
M. Schnabl

Removal and Cleanability

Formulation of the Chip Cleanability Mechanics from Fluid Transport 229
S. Garg, D. Dornfeld, and K. Berger

Burr Minimization and Removal by Micro Milling Strategies or Micro
Peening Processes ... 237
A. Kienzler, M. Deuchert, and V. Schulze

Assessment of Deburring Costs in Industrial Case Studies 245
P.J. Arrazola

Author Index .. 253
A Short View on CIRP

CIRP was founded in 1951 with the aim to address scientifically, through international cooperation, issues related to modern production science and technology. The International Academy for Production Engineering takes its abbreviated name from the French acronym of College International pour la Recherche en Productique (CIRP) and includes ca. 550 members from 41 countries. The number of members is intentionally kept limited, so as to facilitate informal scientific information exchange and personal contacts.

CIRP has some 170 Fellows and Honorary Fellows who are internationally recognized scientists elected to be CIRP members for life. Due to the limited number of CIRP Fellows, the election of a Fellow is a lengthy, rigorous process ensuring the highest possible academic standards.

CIRP includes some 130 associate members, well known scientists, with high potential, elected typically for a period of three years with the possibility of renewal. A number of Associate members eventually become Fellows. Some Associated members may also belong to fields related to Manufacturing.

CIRP, although an academic organization, encourages the participation of industry in its activities. There are ca. 140 corporate members who follow the research work of the academic members of CIRP, and very often contribute to the information exchange within CIRP by presenting their views on industrial needs and perspectives.

Invited members, particularly from countries not yet involved in CIRP, are also included in the CIRP community.

In a recent development, there is work under way to establish a CIRP Network of young scientists active in manufacturing research.

CIRP aims in general at:

• Promoting scientific research, related to
 • manufacturing processes,
 • production equipment and automation,
 • manufacturing systems, and
 • product design and manufacturing.

• Promoting cooperative research among the members of the Academy and creating opportunities for informal contacts among CIRP members at large.

• Promoting the industrial application of the fundamental research work and simultaneously receiving feedback from industry, related to industrial needs and their evolution.

• Organizing an annual General Assembly with keynote and paper sessions and meetings of the Scientific and Technical Committees, publishing papers, reports, annals and other technical information, organizing and sponsoring international conferences.

CIRP is organized along the lines of a number of Scientific Technical Committees (STCs) and Working Groups (WGs), covering many areas. CIRP organizes annually a General Assembly and the so called January Meetings. In the General Assembly (GA), which lasts
for a week, there is an intensive technical program with over 140 technical paper presentations from different fields of manufacturing, a number of keynote papers, at the opening of the conference, as well as technical work within the STCs. In parallel, there is a social program, aiming at making the culture of the General Assembly site known to the members and also at creating an informal environment for information exchange among the members. The January meetings are always organized in Paris, and last three days. Moreover CIRP organizes, through its membership, a number of conferences, notably the Manufacturing Systems Seminar and a number of other conferences with relevant topics. CIRP members also organize a variety of conferences, under the sponsorship of CIRP.

The main publications of CIRP are the CIRP Annals under ISI standards with two volumes; Volume I, with refereed papers presented in the GA by Fellows, Associate, Corporate and Invited members and Volume II with refereed keynote papers. There are also CIRP proceedings, including round table discussions, technical reports, special issues, reports and internal communications, proceedings of CIRP conferences, dictionaries of production engineering etc. A Newsletter is also published twice a year. Currently the CIRP Annals are published by Elsevier, while Springer Verlag publishes the Dictionaries of Production Engineering. There are under development one or more journals, complementing the work published in the CIRP Annals.

The CIRP organization includes besides the President, who is elected annually, the Council and a number of other committees ensuring a continuous improvement of the CIRP organization and reflecting the changing needs of manufacturing science and technology.

CIRP has its headquarters in Paris, staffed by permanent personnel and welcomes potential corporate members and interested parties in CIRP publication and activities in general.

For further information please contact:
CIRP Secretariat, 9 rue Mayran, 75009 PARIS, France
Phone: ++33 1 45 26 21 80, Fax: ++33 1 45 26 92 15
e-mail: cirp@cirp.net
http://www.cirp.net/secretariat/secretariat.html
Organization

Conference Chairman
Aurich, J.C., University of Kaiserslautern

Co-Chairman
Dornfeld, D., University of Berkeley
Heisel, U., University of Stuttgart

Organizing Committee
Aurich, J.C., University of Kaiserslautern
Franke, V., University of Kaiserslautern
Herzenstiel, P., University of Kaiserslautern
Leitz, L., University of Kaiserslautern
Mannweiler, C., University of Kaiserslautern
Schleret, R., University of Kaiserslautern
Tuncay, S., University of Kaiserslautern

International Scientific Committee
Abele, E. (Germany)
Altena, H. (Netherlands)
Arrazola, P. (Spain)
Bouzakis, K. (Greece)
Brinksmeier, E. (Germany)
Byrne, G. (Ireland)
Childs, T. (UK)
Denkena, B. (Germany)
Heisel, U. (Germany)
Ko, S. (Korea)
Leopold, J. (Germany)
Min, S. (USA)
Teti, R. (Italy)
Weinert, K. (Germany)

Secretariat
R. Schleret, S. Tuncay
c/o Institute for Manufacturing Technology and Production Systems – FBK
University of Kaiserslautern
We Thank Our Sponsors

Adam Opel GmbH
Opelkreisel 1-9
67663 Kaiserslautern

Deutsche Forschungsgemeinschaft (DFG)
Kennedyallee 40
53175 Bonn

Land Rheinland Pfalz
Staatskanzlei Rheinland-Pfalz
Peter-Altmeier-Allee 1
55116 Mainz

Wipotec GmbH
Adam-Hoffmann-Str. 26
67657 Kaiserslautern
Contributors

P.J. Arrazola Manufacturing Department, Faculty of Engineering, Mondragon University, 20500 Mondragon, Spain, pjarrazola@eps.mondragon.edu

J.C. Aurich Institute for Manufacturing Technology and Production Systems, University of Kaiserslautern, P.O. Box 3049, 67653 Kaiserslautern, Germany

K. Berger Daimler AG, Material Technology Department, 70546 Stuttgart, Germany

D. Biermann Institute of Machining Technology, Technische Universität Dortmund, Baroper Str. 301, 44227 Dortmund, Germany, biermann@isf.de

F. Boud Department of Mechanical Materials and Manufacturing Engineering, University of Nottingham, Nottingham, NG7 2RD, UK, fathi.boud@nottingham.ac.uk

E. Brinksmeier Foundation Institute for Materials Science, Badgasteiner Str. 3, 28359 Bremen, Germany

L. de Leon Institute of Production Engineering and Machine Tools, Leibniz Universität Hannover, An der Universität 2, 30823 Garbsen, Germany

B. Denkena Institute of Production Engineering and Machine Tools, Leibniz Universität Hannover, An der Universität 2, 30823 Garbsen, Germany

M. Deuchert Universität Karlsruhe (TH), Institut für Produktionstechnik, 76131 Karlsruhe, Germany

M. Dix Institute for Machine Tools and Production Processes, Chemnitz, Germany, martin.dix.tu-chemnitz@iwu.fraunhofer.de

D. Dornfeld Mechanical Engineering Department, University of California, Berkeley, CA 94720-1740, USA

F. Elbing CryoSnow GmbH, Zitadellenweg 20e, 13599 Berlin, Germany

S. Engin Pratt & Whitney Canada Corp., 1000 Marie-Victorin, Longueuil, Quebec, J4G 1A1, Canada

J. Engmann Institute for Manufacturing Technology and Production Systems, University of Kaiserslautern, P.O. Box 3049, 67653 Kaiserslautern, Germany

C. Essig WZL, Laboratory for Machine Tools and Production Engineering, Aachen University, 52056 Aachen, Germany

S. Fangmann Foundation Institute for Materials Science, Badgasteiner Str. 3, 28359 Bremen, Germany, fangmann@iwt-bremen.de

J. Folkes Department of Mechanical Materials and Manufacturing Engineering, University of Nottingham, Nottingham, NG7 2RD, UK
V. Franke Institute for Manufacturing Technology and Production Systems, University of Kaiserslautern, P.O. Box 3049, 67653 Kaiserslautern, Germany, franke@cpk.uni-kl.de

S. Garg Mechanical Engineering Department, University of California, Berkeley, CA 94720-1740, USA, sgarg@berkeley.edu

R. Haberland Institute for Manufacturing Technology and Production Systems, University of Kaiserslautern, P.O. Box 3049, 67653 Kaiserslautern, Germany

M. Heilmann Institute of Machining Technology, Technische Universität Dortmund, Baroper Str. 301, 44227 Dortmund, Germany

U. Heisel Institute for Machine Tools, Universität Stuttgart, P.O. Box 106037, 70049 Stuttgart, Germany, heisel@ifw.uni-stuttgart.de

C. Hellstern George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, GA 30332, USA

H.P. Hoang Department of Mechanical Design and Production Engineering, Konkuk University, 1 Hwayang dong, Gwangjin gu, 143-701, Seoul, Korea

J. Kang Department of Mechanical and Aerospace Engineering, University of Florida, P.O. Box 32611, Gainesville, FL 32611-6300, USA, hitomiy@ufl.edu

S. Kannan Rolls-Royce plc, Derby, DE24 8BJ, UK

B. Karpuschewski Institute of Manufacturing Technology and Quality Management, Otto-von-Guericke-University Magdeburg, P.O. Box 4120, 39016 Magdeburg, Germany, karpu@ovgu.de

J. Kästner Institute of Production Engineering and Machine Tools, Leibniz Universität Hannover, An der Universität 2, 30823 Garbsen, Germany, kaestner@ifw.uni-hannover.de

A. Kienzler Institut für Werkstoffkunde I, Universität Karlsruhe (TH), 76131 Karlsruhe, Germany, andreas.kienzler@iwk1.uka.de

F. Klocke WZL, Laboratory for Machine Tools and Production Engineering, Aachen University, 52056 Aachen, Germany, FKlocke@wzlrwth-aachen.de

S.L. Ko Department of Mechanical Design and Production Engineering, Konkuk University, 1 Hwayang dong, Gwangjin gu, 143-701, Seoul, Korea, slko@konkuk.ac.kr

M. Kretzschmar Institute for Machine Tools and Factory Management (IWF), Technical University Berlin, Office PTZ 1, Pascalstr. 8-9, 10587 Berlin, Germany, kretzschmar@iwf.tu-berlin.de

L. Leitz Institute for Manufacturing Technology and Production Systems, University of Kaiserslautern, P.O. Box 3049, 67653 Kaiserslautern, Germany, leitz@cpk.uni-kl.de

J. Leopold Fraunhofer Institute for Machine Tools and Forming Technology, IWU Chemnitz, Reichenhainer Str. 88, 09126 Chemnitz, Germany, info.leo@web.de

L. Liao Department of Aerospace Engineering, Ryerson University, 350 Victoria Street, Toronto, M5B 2K3, Canada

D. Lung WZL, Laboratory for Machine Tools and Production Engineering, Aachen University, 52056 Aachen, Germany

K. Martinsen RTIM AS, P.O. Box 2831, Raufoss, Norway, kristian.martinsen@rtim.raufoss.com

T. Marx Institute for Manufacturing Technology and Production Systems, University of Kaiserslautern, P.O. Box 3049, 67653 Kaiserslautern, Germany
T. Matsumura Department of Mechanical Engineering, Tokyo Denki University, 2-2 Kanda Nishiki-cho, Chiyoda-ku, Tokyo 101-8457, Japan, tmatsumu@eck.dendai.ac.jp

S.N. Melkote George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, GA 30332, USA, shreyes.melkote@me.gatech.edu

V. Mihotovic Institute for Machine Tools and Factory Management (IWF), Technische Universität Berlin, Office PTZ 1, Pascalstr. 8-9, 10587 Berlin, Germany, mihotovic@ifw.uberlin.de

S. Min Laboratory for Manufacturing and Sustainability, Mechanical Engineering Department, University of California, Berkeley, CA 94720-1740, USA

J.B. Morehouse Georgia Institute of Technology, Manufacturing Research Center, 813 Ferst Drive, Atlanta, GA 30332, USA

R. Neugebauer Fraunhofer Institute for Machine Tools and Forming Technology, Chemnitz, Germany

T.R. Newton George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, GA 30332, USA

M. Petzel Institute of Manufacturing Technology and Quality Management, Otto-von-Guericke-University Magdeburg, P.O. Box 4120, 39016 Magdeburg, Germany

I.G. Reichenbach Institute for Manufacturing Technology and Production Systems, University of Kaiserslautern, P.O. Box 3049, 67653 Kaiserslautern, Germany

G. Ringen RTIM AS, P.O. Box 2831, Raufoss, Norway

M. Schaal Institute for Machine Tools, Universität Stuttgart, P.O. Box 106037, 70049 Stuttgart, Germany

G. Schmidt Fraunhofer Institute for Machine Tools and Forming Technology, Chemnitz, Germany

M. Schnabl framag Industrieanlagenbau GmbH, Neukirchnerstrasse 9, 4873 Frankenburg, Austria, m.schnabl@framag.com

G.M. Schueler Institute for Manufacturing Technology and Production Systems, University of Kaiserslautern, P.O. Box 3049, 67653 Kaiserslautern, Germany, schueler@cpk.uni-kl.de

V. Schulze Institut für Werkstoffkunde I; Institut für Produktionstechnik, Universität Karlsruhe (TH), 76131 Karlsruhe, Germany

H. Sudermann Institute for Manufacturing Technology and Production Systems, University of Kaiserslautern, P.O. Box 3049, 67653 Kaiserslautern, Germany, fbk@cpk.uni-kl.de

H. Szulczynski Robert Bosch GmbH, Diesel Systems – Manufacturing Department 7, Engineering Nozzle BaP/MOE 7, 96045 Bamberg, Germany

N. Tantra Department of Mechanical Materials and Manufacturing Engineering, University of Nottingham, Nottingham, NG7 2RD, UK

S. Turner Lockheed Martin Aeronautics Corporation, 86 South Cobb Drive, Marietta, GA 30063, USA

E. Uhlmann Institute for Machine Tools and Factory Management (IWF), Technische Universität Berlin, Office PTZ 1, Pascalstr. 8-9, 10587 Berlin, Germany

B. Wang Institute of Production Engineering and Machine Tools, Leibniz Universität Hannover, An der Universität 2, 30823 Garbsen, Germany, wang@ifw.uni-hannover.de
R. Wohlgemuth TBZ-PARIV GmbH, Bernsdorfer Strasse 210-212, 09126 Chemnitz, Germany

G. Wolf Institute for Machine Tools, Universität Stuttgart, P.O. Box 106037, 70049 Stuttgart, Germany

I.W. Wright Rolls-Royce plc, Derby, DE24 8BJ, UK

F. Xi Department of Aerospace Engineering, Ryerson University, 350 Victoria Street, Toronto, M5B 2K3, Canada, fengxi@ryerson.ca

H. Yamaguchi Department of Mechanical and Aerospace Engineering, University of Florida, P.O. Box 32611, Gainesville, FL 32611-6300, USA, hitomiy@ufl.edu